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ABSTRACT 

WANG, CONGJIAN. Exact-to-Precision Generalized Perturbation Theory for Nuclear 
Reactor Analysis. (Under the direction of Dr. Hany S. Abdel-Khalik.) 

This dissertation is devoted to developing a unified framework under the name of exact-

to-precision generalized perturbation theory (EPGPT) which combines perturbation theory 

with reduced basis methods and range finding algorithms for reactor analysis and design 

calculations. This framework places high premium on reducing the associated computational 

overhead via the reduced basis methods in order to enable the use of perturbation theory in 

routine reactor calculations. For this work, EPGPT will be used to evaluate the variations in 

the neutron flux due to various perturbations such as cross sections perturbations, enrichment 

variations, poison loading, temperature, etc., at the lattice physics level, often referred to as 

assembly level calculations. To ensure that the EPGPT predications are robust, range-finding 

algorithm is utilized to make quantitative bounding statements about the errors in the 

predications of responses for all possible model perturbations. In contrast to traditional 

generalized perturbation theory, EPGPT allows one to efficiently calculate higher orders of 

variations for the responses of interest with very inexpensive computational cost. 

The major focus of this research is to develop an efficient computational algorithm 

employing the EPGPT to address the explosion in dimensionality whether at the input 

parameter level or at the response level. Although the proposed algorithm is only 

demonstrated by using radiation diffusion/transport models for the purpose of reactor design 

analysis, it can be applied to many different problems because of it is generic in nature. By 

way of examples, these new developments could be employed in core simulation to 

accurately estimate the few-group cross sections variations resulting from perturbations in 

neutronics and thermal-hydraulics core conditions. These variations are currently being 
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described using a look-up table approach, where thousands of assembly calculations are 

performed to capture few-group cross sections variations for the downstream core 

calculations. Other applications include the efficient evaluation of surrogates for applications 

that require repeated model runs such as design optimization, inverse studies, uncertainty 

quantification, and online core monitoring.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Overview and Motivation for Research 

The role of scientific computing has been heavily promoted in many fields to improve 

understanding the physics of complex engineering systems via computational models in 

recent years. This is because conducting the experiments can be time-consuming, inflexible, 

expensive and difficult to repeat, especially for nuclear reactor systems. From an engineering 

point of view, a computational model is a mathematical representation of the physical system 

of interest. The model is represented by a set of mathematical equations whose solution can 

be used to measure the performance of the system. Generally speaking, there are three key 

elements for a computational model, i.e., parameters, state or state variables, and responses 

of interest. The parameters, on the other hand, are the inputs of the model; the state describes 

the basic physical quantity that is calculated by the numerical solution, e.g., flow velocity 

distribution, temperature distribution, atom displacement, etc.; the responses of interest, in 

general, are functions of the state and the parameters. In reactor physics analysis, one can use 

neutron transport/diffusion equation to describe the motions and interactions of neutrons with 

materials within the reactor core. For this model, the input parameters involve atom densities, 

microscopic cross sections, and fission yields; the state is denoted as the neutron flux; and the 

power distributions across the core can be considered as the responses of interest. 

Reactor design calculations are mainly focusing on the determination of the neutron flux 

and power generated inside the reactor core. Given the complex nature of the physics 
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governing the neutron transport, one must execute reactor calculations many times to 

characterize the impact of various core conditions on the responses of interest. This proves to 

be a computationally demanding task given the heterogeneity of reactor design deliberately 

introduced in support of economical and safety considerations. In nuclear engineering 

literature, abundance of examples indicates that perturbation theory can be employed to 

complete this analysis in a computationally efficient manner. That is achieved with the help 

of an adjoint model - the mathematical dual of the forward model - that calculates an 

importance function, called the adjoint solution. The adjoint solution calculated at reference 

condition allows one to estimate the variations in the responses of interest to a given order 

without re-executing the forward model. A first-order perturbation theory allows one to 

calculate the linear variations in responses resulting from perturbations in core conditions, 

often characterized by perturbations in input parameters such as fuel enrichments, cross 

sections, temperatures, etc. Perturbation theory has also been extended to calculate higher 

orders of variations when first order of variations is not enough to accurately estimate 

response variations. The following is a list of typical problems for which the use of 

perturbation theory has been attempted with varying level of success: 

1. Fuel management optimization, e.g., fuel evolution and shuffling analysis, equilibrium 

cycle optimization; 

2. Sensitivity analysis for reaction rates ratios and reactivity coefficients, whose results 

can be used in uncertainty quantification and data assimilation; 

3. Accelerator driven system (ADS) analysis; 
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4. Control rod worth calculations; 

5. Shielding design, i.e., in deep penetration neutron-photon transport calculations; 

6. Boundary condition perturbation theory in assembly calculations.  

Despite the great theoretical advances recorded in the literature, perturbation theory has 

not realized its full potential in practice. This is because existing perturbation theory faces 

two challenges which prohibit its use for real-world reactor calculations. First, to render 

accurate estimation of response variations for general nonlinear cases, perturbation theory 

must be able to calculate higher orders of variations for the response of interest. This proves 

to be as computationally demanding as executing the forward model repeatedly, thereby 

defeating the use of perturbation theory. Second, because the adjoint solution is intimately 

tied to the response of interest (as will be shown later), e.g., the total power produced in a 

given fuel pin, one must independently execute the adjoint model for each response of 

interest.  

This dissertation aims to address these two challenges via a new mathematical 

framework that combines existing perturbation theory with reduced basis methods used in 

reduced order modeling and range finding algorithms from linear algebra. This framework 

will be referred to as Exact-to-Precision Generalized Perturbation Theory (EPGPT). The idea 

is that although reactor calculations are inherently complex, our past experience has shown 

that they depend on few degrees of freedom (DOFs). When properly determined, these DOFs 

can be used to recast existing perturbation theory into one that efficiently calculates higher 

orders of variations and be independent of the responses of interest. Range finding algorithms 
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are employed to determine these DOFs, while reduced basis methods help recast the adjoint 

model in terms of the identified DOFs rather than the responses of interest. Finally, the 

descriptive ‘Exact-to-Precision’ implies the capability to estimate errors in response 

variations, rather than the order of the variations which can be misleading, especially for 

nonlinear models. 

In the context of reactor calculations, this framework will be used to evaluate the 

variations in the neutron flux due to various perturbations such as control rod insertion, 

enrichment variations, poison loading, temperature, etc., at the lattice physics level, often 

referred to as assembly level calculations. In typical assembly calculations, one executes the 

flux solver a number of times in the order of 105 to capture the impact of all possible 

variations on the few-group cross sections used in downstream calculations, e.g. if the reactor 

core is divided into 20 layers for the axial geometry, and one only considers 30 assembly 

types for each axial layer during 60 depletion time steps. Providing 2 control rods variations 

(in or out), and 3 different fuel temperatures for all assembly types, the total required number 

of assemblies calculations would be 530 60 220 3 2.16 10× × × × = × . The use of our developed 

framework will significantly minimize this computational cost. 

The goal of this dissertation is to enable the completion of engineering analyses which 

require repeated execution of the models with high accuracy and computational efficiency. 

Applications like sensitivity analysis (SA), uncertainty quantification (UQ), data 

assimilation, design optimization, and homogenization techniques could benefit greatly from 

EpGPT. The specific objectives of this dissertation are: 
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1. To develop an efficient perturbation theory algorithm that recognizes the explosion in 

both the input parameters and responses spaces for reactor physics models;  

2. To calculate the exact (with user-defined precision) variations in the responses of 

interest, rather than estimating a certain order of variation;  

3. Enable efficient propagation of non-Gaussian uncertainties through nonlinear models; 

The use of EPGPT to achieve these objectives is expected to be advantageous to state of 

the art techniques for the following reasons:  

First, the number of adjoint evaluations needed by EPGPT to capture higher orders of 

variations is independent of the size of the state phase space. They are determined using a 

statistical approach that employs only the forward model simulations.  

Second, the adjoint model is not dependent on the number or type of responses or the 

number of input parameters.  

Third, unlike existing reduced basis methods, an upper error bound could be established 

to describe the accuracy of the response variations as they compare to exact response 

variations calculated using direct forward model perturbations. Moreover, different error 

bounds for different responses could also be defined by the user depending on the design 

specifications. 

 

1.2 Literature Review 

This dissertation employs EPGPT theory, a hybrid methodology combining the 

perturbation theory, the reduced basis methods, and the range-finding algorithms to reduce 
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the computational cost required to calculate the exact responses’ variations in support of 

nuclear reactor design calculations. These three classes of methods have been widely 

employed by scientists and practitioners from a variety of scientific backgrounds. This 

section provides a literature review of the state-of-the-art in these three areas, highlighting 

their advantages, and the limitations to be addressed by the EPGPT theory.  

 

1.2.1 Previous Work on Perturbation Theory  

First-order perturbation theory is able to bypass the evaluation of the perturbed state by 

solving an adjoint model that is related to the unperturbed model, meaning that the adjoint 

model needs to be executed only once to calculate adjoint function. Response variations with 

respect to all input parameters could then be evaluated using simple inner product relations 

involving the forward and adjoint solutions of the unperturbed model. This aspect of 

perturbation theory has given it a competitive advantage over forward perturbation methods 

when the number of input parameters is larger than the responses of interest. During the last 

fifty years, it has been successfully applied to reactor design calculations, e.g., reactor critical 

calculations, depletion calculations, shielding design, and kinetics problems. 

Wigner is often credited as the first to introduce the use of perturbation theory in nuclear 

engineering calculations (Wigner 1992). As acknowledged by Wigner, additional 

contributions were introduced by (Usachev 1964). These early contributions were further 

developed for nuclear applications by (Lewins 1965), (Pomraning 1965), (Gandini 1967), 

(Stacey 1974), (Cacuci et al. 1980), (Rahnema 1981) and others. Perturbation theory, or its 
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generalization, i.e., generalized perturbation theory or GPT, has been widely used to perform 

sensitivity analysis in reactor physics and shielding problems (Abdel-Khalik 2012, Ball 2012, 

Cacuci 1981a, Rearden 2004). Moreover, it has found its way into standardized computer 

codes that are available for routine reactor calculations; see for example the computer 

package SCALE 6.0 (Jessee, Williams & Dehart 2009). The objective of sensitivity analysis 

is to evaluate the sensitivity coefficients that represent the percentage effect on the response 

of interest to a percentage perturbation in the nuclear reaction probabilities or cross sections. 

The sensitivity coefficients could be then used in conjunction with the uncertainties in the 

cross section data, the cross section covariance data, to determine the uncertainty in the 

response of interest due to uncertainties in the nuclear cross section library. 

It is noteworthy to mention that several GPT formalisms have appeared in the literature. 

As mentioned by (Gandini 2001), the three most prominent formalisms are: (a). Heuristic 

generalized perturbation theory (HGPT), first adopted by (Usachev 1964) and then 

extensively developed by (Gandini 1967); (b). Variational formalism adopted by (Lewins 

1965) and (Stacey 1974); (c). Differential formalism proposed by (Oblow 1978) and 

including the matrix formalism further developed by (Cacuci et al. 1980). An introduction to 

these three formalisms is given: 

(a). Heuristic Generalized Perturbation Theory 

(Usachev 1964) developed the perturbation theory, making exclusive use of importance 

conservation concepts, for linear responses of neutron flux in a reactor working under steady-

state conditions. The neutron importance function is corresponding to the contribution of a 
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given particle, inserted at a given time and a given point of the phase space, to the response 

of interest. Usachev’s formulation was extended to calculate the bilinear responses of the 

forward and adjoint fluxes, e.g., reactivity worth, reaction ratios and prompt neutron 

lifetimes, by (Gandini 1967).  This approach was then extensively developed by (Gandini 

1978a, 1978b, 1981, 1988, 1990, 2001) in static problem, time-dependent problem and 

nonlinear subcritical, accelerator driven systems, and named as Heuristic Generalized 

Perturbation Theory (HGPT) by (Gandini 2001).  

(b). Variational Formalism 

The variational approach, based on variational principles, was developed by (Lewins 

1965), (Pomraning 1965), (Stacey 1974) and (Williams 1978). Variational approach provides 

a strong theoretical basis for generalized perturbation theory, and has a much wider 

application in reactor physics. (Slesarev, Sirotkin 1971) introduced the variational principles 

into the finite-difference schemes to solve the neutron transport equation. (Pomraning 1986) 

employed the variational approach to accurately calculate the mixed boundary conditions for 

the equilibrium diffusion equation of radiative transfer. This approach was also applied to 

stochastic radiation transport problems to estimate the average of linear responses of interest 

by (Su, Pomraning 1994), as well as boundary conditions perturbations in steady state 

neutron transport calculations (Gheorghiu, Rahnema 1998). 

(c). Differential Formalism 

The differential approach, based on a formal differentiation of the response considered, 

was proposed by (Oblow 1976) and extensively developed by (Cacuci et al. 1980). The initial 
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applications were made in the thermal-hydraulic field by (Oblow 1978). The results, 

compared with the response surface technique, confirm the expectation on its computational 

efficiency.  A more rigorous formalism of differential approach for the perturbation theory 

was established, in particular the matrix approach was developed making the use of the same 

principles employed in differential approach to obtain the importance function (Cacuci et al. 

1980). Based on this formalism, (Cacuci, Ionescu-Bujor & Navon 2005) proposed two 

modern sensitivity analysis approaches, i.e., the adjoint sensitivity analysis procedure and the 

global adjoint sensitivity analysis procedure, which were successfully applied to two-phase 

flow models to simulate the thermal-hydraulic characteristics of light water nuclear reactors, 

and radiative convective model for climate simulation.  

It is important to reaffirm that all the formalisms described above lead to identical 

expressions of the sensitivity coefficients (Greenspan 1975). Each of the above methods has 

its own merit, variational and differential formalisms provide a strict mathematical 

framework; while HGPT is a physics oriented approach based on importance conservation 

concepts. Although a difference in the specific treatment of boundary conditions in these 

three formalisms can result in one approach being somewhat advantageous in certain type of 

problems. As also mentioned by (Cacuci et al. 1980), it has always been inherently assumed 

that they all lead to identical expressions for the sensitivity coefficients. In addition, although 

the matrix and operator formalisms may lead to adjoint difference equations that are not 

identical, both formalisms solve consistent numerical approximations of the adjoint 

differential equation.  
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Perturbation theory has also been extended by many scientists to account for higher 

orders of variations when input parameters perturbations are too large to render the accuracy 

of first-order approach acceptable in reactor design calculations. (Mitani 1973) derived a 

higher-order perturbation technique for evaluating the reactivity effects consequent to given 

alterations of reactor system. (Gandini 1978b) developed an explicit higher-order 

perturbation method in terms of input parameters perturbations for static neutron transport 

problems. This work was further exploited by (Gandini 1978a) for time dependent systems, 

e.g., reactor kinetics calculations, depletion calculations. (Greenspan, Gilai 1978) presented a 

second-order GPT formulation with explicit expressions for the general responses, using the 

differential sensitivity theory proposed by (Oblow 1978), for altered source-driven systems. 

This approach was subsequently implemented to evaluate the non-linear effects in cross 

section sensitivity analysis (Greenspan, Kami & Gilai 1979). (Dubi, Dudziak 1981) provided 

a general explicit expression for the nth-order derivative of neutron flux that utilizes the 

unperturbed flux, adjoint flux, and a detailed Green’s function, all from the unperturbed 

problem, everywhere in the region of the perturbation. (White, Swanbon 1990) developed an 

explicit second-order GPT formulation, using a direct correlation technique to obtain a first-

order approximation of the perturbed flux distribution, for the perturbed powers in two group 

diffusion problem. (Kropaczek, Turinsky 1991) introduced a second-order GPT for nodal 

power prediction during stochastic optimization, (Maldonado, Turinsky & Kropaczek 1995) 

extended its basis to an advanced nodal method, and furthermore, (Moore, Turinsky 1998) 

used it to perform perturbed BWR loading pattern calculations that correctly addresses the 
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strong nonlinear feedbacks of two-phase flow. (Van Geemert 2001)  combined the 

parallelism and higher-order depletion GPT, developed by (Williams 1978), that yields the 

exact perturbation in the equilibrium cycle solution. In his subsequent study, polynomial 

function was utilized to approximate the localized flux variation with higher-order accuracy 

(Van Geemert, Tani 2005). Additionally, higher-order perturbation theory has also been 

introduced into reactor physics for boundary condition variations since 1999 (McKinley, 

Rahnema 1999), which is mainly devoted to cross section homogenization to improve the 

coarse-mesh nodal accuracy (McKinley, Rahnema 2000, McKinley, Rahnema 2002, 

Rahnema, McKinley 2002).   

Classically, there have been three basic approaches for obtaining higher-order 

approximations for the response variations. In the first approach, one attempts to estimate the 

perturbed flux explicitly to some higher-order accuracy. The basic idea is to represent the 

perturbed flux as n n
n

φ β= Ψ , where the sum over n refers to the order of the series 

expansion, nβ  are the coefficient, and the nΨ  functions are successive higher-order 

approximations, e.g. eigenfunctions of neutron diffusion/transport equation, Green’s 

functions, polynomial functions, etc. (Gandini 1978b, Dubi, Dudziak 1981, Van Geemert, 

Tani 2005). The second approach bases on a formal derivation of second-order GPT 

proposed by (Greenspan, Gilai 1978). It couples the importance functions of first-order GPT 

with an expression for the first derivative of the flux with respect to the perturbed quantity. 

This flux derivative is usually expressed as the solution to a generalization fixed-source 

problem. The third approach, based on iterative scheme, can be employed to acquire the 
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higher-order accurate to exact results for the perturbed flux (Moore, Turinsky 1998, 

McKinley, Rahnema 2000, McKinley, Rahnema 2002). 

Unfortunately, as higher orders of variations are sought, the computational cost becomes 

dependent either on the number of input parameters, or the dimension of the space used to 

describe the forward solution, as one can observe from Table 1-1 (Gandini 1978b, McKinley, 

Rahnema 2002, Cacuci 2003, Williams 1986). This challenge has limited the use of 

perturbation theory to linear models and investigative studies only. 

 

Table 1-1. Computational Cost of Perturbation Theory 

Perturbation Theory Method Number of Simulations

Forward-based 1st-order 
Direct Calculation 

GFM 
FSAP 

k + 1 

2nd-order Direct Calculation k×( k + 1 )/2 

Adjoint-based 
GPT 

1st-order ASAP m 
2nd-order 

or 
higher-order

(Gandini 1978b) n 
(Greenspan, Gilai 1978) m×( k + 1) 

(McKinley, Rahnema 2002) n 
• GFM: Green’s function method, FSAP: forward sensitivity analysis procedure, ASAP: 

adjoint sensitivity analysis procedure. 
• k: number of input parameters, m: number of responses of interest, n: dimension of 

system or number of points in the phase space.  
 

 

Another challenge of perturbation theory is the difficulty in calculating multi-responses 

or distributed responses. This is based on the fact that the evaluation of the adjoint function is 

traditionally based on a given single response, implying that a separate adjoint function must 

be evaluated for each desired response. If the responses are distributed in time and space, 
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e.g., the space and time-dependent fluxes, power density, etc., the associated computational 

burden becomes overwhelming if one treats each point in the phase space as a separate 

response. Two primary approaches have been suggested in the past to address distributed 

responses. First, instead of treating each point in the phase space as a single response, 

responses could be averaged over coarse regions and the averaged values are employed as 

responses (Williams 1986). Second, one could employ a multi-modal approach to express 

distributed responses. Multi-modal techniques are based on the observation that any smooth 

function could be expanded using a set of modes, i.e., basis functions. If the number of terms 

in the expansion is low, one could employ the coefficients of the expansion as responses. If 

parameters perturbations are small enough, the variations in the responses everywhere in the 

phase space could be approximated by variations in the expansion coefficients. This idea has 

been employed in many scientific fields. For example, (Cacuci 1981b) used a generalized 

Fourier expansion to describe responses distribution in space and time in the field of nuclear 

engineering. In this approach, the number of adjoint model executions becomes dependent on 

the number of terms in the expansion rather than on the number of points in the phase space. 

For sufficiently smooth distributed responses and with a proper choice of the basis functions, 

this could lead to tremendous computational savings. In practical engineering calculations, 

however, the distributed responses are often non-smooth, e.g., severe flux gradients across 

the interface between two significantly different fuel assemblies or the flux change following 

the insertion of a control rod. Another obstacle that faces multi-modal techniques is that input 

parameters perturbations could be large enough where the number of terms in the expansion 
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is no longer enough to accurately capture the responses variations. Also, depending on the 

type of variations, the optimum basis functions for the perturbed case may not be the same as 

those employed at reference unperturbed conditions. Therefore, the applicability of multi-

modal methods is limited to problem with smooth distributed responses only, and extending 

this approach to estimate higher orders of variations becomes more difficult as the functions 

employed in the expansion could in general be perturbation-dependent. 

 

1.2.2 Reduced basis methods and reduction error analysis 

Historically, reduced basis methods have been built upon underlying finite element 

discretizations. Reduced basis discretization is, in brief, a Galerkin projection on a K-

dimensional approximation space that focuses on the parametrically induced manifolds. 

Moreover, many different kinds of reduced basis methods have been devised to reduce the 

computational cost associated with the simulation of complex models, especially when 

repeated evaluations are required for supporting engineering analyses such as SA and UQ. In 

spite of the startling growth in computer power over the past few decades, the simulation of 

complex systems is still considered computationally challenging, which keeps reduced basis 

methods at the forefront of modeling and simulation research. The fundamental idea of 

reduced basis methods is to represent the response/state space, often belonging to a high 

dimensional space, by much fewer DOFs described mathematically by a subspace. A 

subspace is an abstract notion used by most reduced basis methods. For example, in 

Euclidean geometry, a 2D plane passing through the origin is considered a subspace in a 3D 
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space. The subspace has two DOFs, i.e., one degree of freedom less than the 3D space. Any 

two independent vectors are said to form a basis for the subspace, implying that any vector in 

the subspace can be described by a linear combination of the basis vectors. Subspaces are 

abstract notions which generalize the Euclidean picture of a hyper-plane into high 

dimensional spaces. The idea is that one can describe points in high dimensional spaces by 

much fewer DOFs.  

Reduced basis methods first appeared in 1970s tackling linear/nonlinear structural 

analysis (Almroth, Brogan & Stern 1978), and since then have been employed and further 

developed by many researchers from different scientific backgrounds, e.g., fluid dynamics, 

nuclear physics, and quantum mechanics (Porsching 1985, Ito, Ravindran 1998, Bang 2012, 

Rozza 2011). Furthermore, these techniques were introduced into discretized stochastic 

systems by (Nair, Keane 2000) and further extended to efficiently compute response 

uncertainty for non-Gaussian models via combining with polynomial chaos expansions 

(Sachdeva, Nair & Keane 2006). 

The essential approach utilized to explore the best basis functions is known as proper 

orthogonal decomposition (POD) or POD of snapshots in temporal domain. A snapshot is 

usually denoted as the state of a model at a particular point in time. In this dissertation, we 

will also use the snapshot to denote the solution of a set of partial differential equations that 

describes the behaviors of examined computational model, corresponding to a given 

perturbation in input parameters. According to (Lumley 1970), the POD was rediscovered 

independently by Kosambi (1943), Loève (1945), Karhunen (1946), Pougachev (1953) and 
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Obukhov (1954) in a variety of disciplines under a variety of different names, e.g. Principal 

Component Analysis (PCA), Karhunen-Loève Decomposition (KLD), or Empirical 

Orthogonal Function (EOF),. The POD/POD of snapshots did not gain much attention until 

the mid 80’s due to its computational requirements. To date, it has gained recognition as a 

powerful and elegant tool for complex model reduction aimed at obtaining low-dimension 

approximate description of a high-dimension state space. In the last thirty years, the 

POD/POD of snapshots has been successfully applied to image processing, signal analysis, 

data compression, structure dynamics, fluid flows, oceanography, etc. (Holmes, Lumley & 

Berkooz 1996, Kappagantu, Feeny 2000, Georgiou, Schwartz 1999, Rowley 2005, Kerschen 

et al. 2005).  

In addition, there are three essential properties of POD/POD of snapshots which are well 

described by (Liang et al. 2002, Rathinam, Petzold 2004). First, the POD/POD of snapshots 

provides an orthonormal basis for the modal decomposition of an ensemble of systems, such 

as data obtained in the course of experiments or numerical simulations, in a certain least 

square optimal sense. The optimal basis (also called empirical eigenfunctions, empirical basis 

functions, empirical orthogonal functions, proper orthogonal modes, or basis vectors) it 

yields is the most attractive feature of POD/POD of snapshots, because it provides the most 

efficient way of capturing the dominant components of a high-dimension state space with 

only a small number of basis vectors. Second, the modal decomposition of POD is 

completely independent on the data obtained by experiments or numerical simulations. It 

does not assume any prior knowledge of the system that generates the data, while it can also 
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help in identifying patterns in data that will reveal some insight into the underlying system. 

Third, the POD/POD of snapshots does not neglect the nonlinearities of the original system, 

although this approach always looks for linear subspace instead of curved sub-manifolds. 

This is because if the original system is nonlinear, then the resulting POD reduced order 

model will also typically be nonlinear.  

However, early approaches mainly focus on low-dimensional parameter domains and the 

approximated subspaces tended to be local (Porsching 1985, Noor, Peters 1981a, Noor, 

Peters 1981a, Noor, Peters 1981b). Moreover, the POD of snapshots has found most 

application in the time domain, i.e., a single dimension (Bui-Thanh, Damodaran & Willcox 

2003, Willcox, Peraire & Paduano 2002). The application of POD of snapshots into high 

dimensional parameter space seems impracticable, since in high-dimension – even three-

dimension – parameter space simple tensor-products are computationally intractable. Hence, 

many efforts have been devoted to devise efficient sampling strategies to obtain the best 

representative snapshots in order to gain large computational reduction. Recently, there has 

been a surge of interest in the sparse grid stochastic collocation method in order to reduce the 

dimensionality of input parameter space (Ganapathysubramanian, Zabaras 2007, Nobile, 

Tempone & Webster 2008a, Nobile, Tempone & Webster 2008b), whereas the practical 

applications are limited to a small dimension of input parameter space at present, e.g., (10)O . 

One of the most promising approaches is a greedy sampling method proposed by Rozza and 

his colleagues (Rozza 2011, Rozza, Veroy 2007, Patera, Rozza 2007). This method makes 

use of a posteriori error bound to construct the hierarchical Lagrange reduced basis space, i.e. 
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the basis elements are the snapshots of the given model. Another promising approach is the 

efficient subspace method (ESM) introduced by (Abdel-Khalik 2004). ESM is originally 

used to find low rank approximations to the very large, dense sensitivity matrices which are 

generally rank-deficient. ESM employs randomized perturbations in the input parameter 

space to identify the efficient subspace for the vectors of multi-responses sensitivity 

coefficients. Typically, the dimension of input parameter space for BWR core simulations is 

larger than 610 . ESM was employed to reduce the number of lattice physics calculations by 

an order of magnitude in cross section adjustment (Jessee 2008). 

For reduced basis methods to be effective, response/state variations calculated from the 

full space should be approximately equal to those calculated from the subspace of reduced 

basis. The discrepancies between the two are referred to hereinafter as reduction errors. 

Many approaches have been devised to identify the subspace that minimizes reduction errors. 

Early studies mainly focus on priori error analysis (Porsching 1985, Fink, Rheinboldt 1985, 

Rheinboldt 1993). Previously, (Porsching 1985, Fink, Rheinboldt 1985) proposed a priori 

error estimator for single parameter problems; while (Rheinboldt 1993) worked on a priori 

error estimator for multi-parameter problems. However, priori error estimators, as provided 

by the standard error analysis for finite-element or finite-different methods, are often 

insufficient and unstable, since the overall accuracy of the numerical approximations is 

deteriorated by local singularities, e.g., control rod movement, or burnable poison rod 

insertion in a nuclear reactor system. (Noor, Peters 1983) first investigated posteriori error 

analysis by computing the residual norms with the solution from the reduced system of 
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equations. However, this is a pretty rough error estimator without any stability consideration. 

For realistic large-scale systems, many thousands of simulations are needed to obtain reliable 

results. In the past few years, many scientists have proposed several heuristic estimators for 

the reduction errors. (Galbally et al. 2010) employed an average relative error norm of 

outputs over a set of test parameters: 

 
( ) ( )

( )
2

2

mean
r

rel α
ε

φ α φ α
φ α∈ℑ

−
=  

where 
2
  is Euclidean norm, ℑ  denotes the test set, rφ  is the POD approximation for φ  

employing r basis vectors. (Chaturantabut, Sorensen 2010) shown that the average error 

bound satisfies the following inequality: 

 ( ) ( ) 1
1

2

1
r

l

r
i

C
l

φ α φ α σ
=

+− ≤  

where C is a constant, and 1rσ +  is (r+1)th  singular value of the snapshot matrix Q , and l is 

the number of snapshots and r is the number of optimal basis vectors. 

From a practical viewpoint, these error estimators provide reasonable qualitative 

approximations of the expected errors. However, these quantities cannot make quantitative 

bounding statements about the reduction errors for all possible model parameters 

perturbations. To overcome this challenge, Rozza and his colleagues devised a rigorous a 

posteriori error estimator based on a greedy sampling method in order to explore much larger 

subsets of parameter spaces in search of most representative basis functions (Rozza 2011, 

Rozza, Veroy 2007, Patera, Rozza 2007). In this dissertation we take advantage of recent 
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developments in randomized linear algebra community. In particular, we employ range-

finding algorithms in conjunction with reduced basis methods to reliably quantify the errors 

resulting from the reduction.  

Range-finding algorithms have been developed in the linear algebra community over the 

past several decades (Golub, Van Loan 1996). They are designed to identify patterns in large 

data sets which can be used to identify the reduced basis spaces. Past research in the nuclear 

engineering community has shown that ESM could be employed to find subspaces for the 

ranges of general rectangular matrices (Abdel-Khalik 2004). In recent years, this algorithm 

has been rigorously proved by applied mathematicians; it has been shown that randomized 

operations could be used to approximate the range of matrix operators with high probability 

(Halko, Martinsson & Tropp 2011). The idea has been further extended to identify the range 

of nonlinear operators by (Bang, Abdel‐Khalik & Hite 2012). 

In particular, the range-finding algorithm used in this dissertation is a probabilistic 

posteriori error estimator employing a small number of oversampling to obtain a reliable 

error bound. Consequently, the computational savings provided by range-finding algorithm 

were typically significant. Additionally, the range-finding algorithm can also be organized 

such that each iteration processes a block of samples simultaneously. This attractive feature 

of range-finding algorithm can lead to dramatic improvements in speed if one exploits 

parallel processors. Furthermore, we note here that range-finding algorithm are similar in 

objective to, but very different in approach from, greedy sampling methods; the former 
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utilizes a set of random samples in the parameter space, while the latter employs a set of 

nested samples in the parameter space.  
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CHAPTER 2.  BRIEF INTRODUCTION OF MATHEMATICAL METHODS 

 

This chapter outlines the mathematical theory and methods for EPGPT. We begin with 

general preliminaries. The purpose of the general preliminaries is to review the background 

material on which the rest of this dissertation shall rest. We discuss the basic elements of 

EPGPT analysis: fundamental subspaces; inner product and norms; proper orthogonal 

decomposition of snapshots; adjoint operators; neutron diffusion/transport theory; 

generalized perturbation theory; and finally range-finding algorithm.  

 

2.1 Preliminaries 

Let   denote the scalar field for real number, and   denote the vector space over  . 

An integer n is denoted by lowercase italic letter n∈ . A vector q  of n components is also 

denoted by a lowercase letter: nq∈ , where n  is an n dimensional vector space over  . 

This should lead to no confusion as the integers will mainly represent the dimensions of the 

various vector spaces. To distinguish between a vector and its components, the notation [ ]i
q  

will be used to denote the ith component of the vector q . If vector has a single component, it 

will be represented by an uppercase italic letter, e.g., R is a real number representing a single 

value or a single-valued functional. 

Matrices will be denoted by bold capital letters. The matrix m n×∈A   belongs to the 

space of matrices of m rows and n columns. To reference the element at the intersection of 
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the ith row and the jth column of matrix A, the following notation is adopted: [ ]ij
A . In 

addition, operators will also be denoted by bold capital letters since the numerically-

discretized operators are in the form of matrices. 

Subspaces will be denoted by  . If   is also a vector space over   using the same 

addition and scalar multiplication operations and ⊆  , then   is called a subspace of  . 

That is,   is a subspace of   if and only if 

 ;  , xy yx⊆ ∈  + ∈     (2.1.1) 

and 

 ;   for all Axx A⊆ ∈  ∈ ∈      (2.1.2) 

The complementary subspace of   is denoted by ⊥ . In this dissertation, two fundamental 

subspaces will be used, that are the range space and the nullspace. For a given matrix 

m n×∈A  , the range space ( )R A  of m  is defined as: 

 ( ) { }| n mR x x ⊆∈=A A    (2.1.3) 

and the nullspace ( )N A  of n  is defined as: 

 ( ) { }| 0n nN x x∈= = ⊆A A   (2.1.4) 

A linearly independent spanning set, i.e., { }1 2, , , r
rq q q ⊆  , for a vector subspace r  is 

called a basis for r . The size of the subspace r  is defined to be the number of vectors in 

any basis for r . 
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Vector and matrix Euclidean norm or 2-norms will be denoted by 
2

, for a vector 

nx∈ , the norm of x is defined to be: 

 [ ]
1

2

2

T
n

i
i

x x x x
=

 = = 
 
  (2.1.5) 

where the superscript ‘T’ denotes the transpose of vector x. The norm of a matrix A is defined 

to be: 

 
2

2 21
max

x
x

=
=A A  (2.1.6) 

The inner product of two vectors is defined to be 

 [ ] [ ]
1

, T

i i

n

i

x y x y x y
=

= = ∈   (2.1.7) 

If the inner product of two vectors , 0x y = , then the two vectors are said to be orthogonal. 

The set  { }1 2, , , r
rq q q ⊆   is called an orthonormal set whenever 

2
1iq =  for each i, and 

i jq q⊥  for all i j≠ . In other words, 

 
1   when ,

,
0   when ,i j

i j
q q

i j≠
=

= 


 (2.1.8) 

An orthogonal matrix is defined to be a real matrix [ ]1 2     n r
rq q q× =Q   whose columns 

constitute an orthonormal basis for the subspace r . 

Similar to the inner product on vectors that uses a sum over corresponding components, 

the inner product on functions is defined as an integral over the domains of functions. For 

example, let ( )ψ α  and ( )φ α  both be functions of the same variables, represented by 
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general symbol kα ∈ ; the inner product of these two continuous functions is then 

expressed and defined by 

 ( ) ( ) ( )
2

1

, , d
α

α

ψ φ ψ φ ψ α φ α α=≡   (2.1.9) 

where the integration is carried over the whole accessible range of the variables. 

A functional is defined as a function whose arguments are themselves functions. For 

example, the responses of interest considered in this dissertation are functions of input 

parameters and state, and the state is a function of input parameters, thus the responses of 

interest is called functionals of the input parameters and state. 

 

2.2 POD of Snapshots 

The main idea of the POD of snapshots is to find a set of ordered orthonormal basis 

vectors in a subspace where a random vector takes its value, such that the samples space 

{ }
1j j

p
y

=
 can be expressed optimally using the selected first r basis vectors { } 1

r

i i
q

= , and the 

basis set { } 1i

r

i
q

=  is the solution to the minimization problem: 

 
{ } 1

2

211

min ,
r

i i

p

j

r

q
j i i

ij

y qy q
= ==

−  (2.2.1) 

The POD of snapshots approach is summarized as follows: 
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It is well know that the solution to Eq. (2.2.1) is provided by the set of the left singular 

vectors of the snapshot matrix 1   n p
py y ×  ∈=Y   . In particular, suppose that the singular 

value decomposition (or in short, SVD) of Y  is  

 T=Y QΣV  (2.2.2) 

where [ ] [ ]1 1   and       n r p r
r rq vvq × ×= =∈ ∈Q V     are orthogonal matrices and 

( )1 1 2, ,  with, 0r r
r rdiag σ σ σ σ σ×= ∈ ≥ ≥ >≥Σ    . The rank of Y  is { }min ,r n p≤ . The 

optimal solution of Eq. (2.2.1) is { } 1i

r

i
q

= . The minimum 2-norm error from approximating the 

snapshots using the POD basis is then given by  

 
1

2

2

1 2 1

,
p

j j i i i
i lj

l r

i

y q qy σ
= = = +

− =    (2.2.3) 

It is noteworthy to remark that in POD of snapshots method, the subspace employed for 

reduction is identified via a predetermined set of state solutions typically at different points in 

time which form a basis for the subspace. This allows the subspace to be tailored more 

intimately, compared to response surface methods, to the model. Despite its success, it is 

hard to guarantee that the evolution of the reference solution at different times is 

POD of Snapshots Approach 

( ) { }

{ }
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representative of all possible variations that may be induced by all possible input parameters 

perturbations. 

 

2.3 Neutron Diffusion or Transport Theory  

For nuclear reactor analysis and design, the central problem is how to determine the 

space, angle, energy, and time-dependence of the neutron distributions in the reactor. 

Because the neutron distributions can be used to determine the nuclear reaction rates, power 

distributions occur within the reactor core. Traditionally, neutron diffusion/transport theory 

can be employed to calculate the distribution of neutrons in the core. Neutron transport 

theory is much more fundamental and exact description of the neutron population in the 

reactor compared to neutron diffusion theory. The neutron transport equation is a linear 

version of the Boltzmann equation having seven independent variables. Considering the 

complex geometries of nuclear reactors and the resonant behaviors in energy of many cross 

sections, the detailed solution of the neutron transport equation for the full-core calculations 

requires lots of computational resources so that one usually employs a two-level 

computational scheme, which is based on the fact that the reactor is an assembly of pin-cells 

or assemblies built in a lattice layout. The first level, denoted as lattice calculation, involves 

the calculation of the neutron transport equation over the pin-cell or assembly using 

numerical techniques with multi-group cross sections as input parameters. At the end of a 

lattice calculation, the homogenized and condensed cross sections are stored for the second 

level full-core calculation. A simplified transport equation, such as diffusion equation or the 
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simplified Pn equation, will be utilized to generate the neutron flux and reaction rates over the 

complete reactor core. In this section, we will briefly introduce the neutron diffusion and 

transport theories, and recommend the reader to (Bell 1979, Duderstadt, Hamilton 1976) for 

the detailed descriptions.  

The neutron transport equation is obtained by the phase-space (i.e., generally space, 

angle, energy and time) balance relation for the neutron flux by which a neutron can be 

gained or lost from an arbitrary volume within the system. In steady-state conditions, it is 

written as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 0

ex

4 0

, , , , , ' ' ', ' , , ', '

1
, ' ' , ' ' , ', ' , ,
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π
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χ φ
π

∞

∞

Ω Ω + Σ Ω − Ω Σ Ω → Ω Ω

= Ω Σ Ω + Ω

∇  

 


 (2.3.1) 

where ( ), ,r Eφ Ω  is the neutron angular flux, ( ),t r EΣ  is the total cross section, 

( )', ', ,s Er EΣ Ω → Ω  is the differential-scattering cross section, ( ),r Eχ  is the fission 

spectrum, ( ),v r E  is the averaged neutron yield per fission, and ( ),f r EΣ  is the fission cross 

section. While the phase-space is denoted by ( ),,r EΩ , which represents the neutron 

location, moving direction and energy, respectively. In this dissertation, the equation (2.3.1) 

is written in a more compact form: 

 ( ) ( )ex, , , ,r E Q r Eφ Ω = ΩP  (2.3.2) 

where P denotes the neutron transport operator and defined as  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 0

4 0

, , , , , ' ' ', ' , , ',

,

, '

1
, ' ' , ' ' , ', '

4

t s

f

r E r E r E d dE E E r E

r E d dE v r

r

rE E r E

π

π

φ φ φ φ

χ φ
π

∞

∞

= Ω Ω + Σ Ω − Ω Σ Ω → Ω

− Ω Ω

∇ Ω

Σ

 

 

P 
 

The equation (2.3.2) could be solved subject to given boundary conditions (e.g., vacuum 

boundaries, reflecting boundaries, periodic boundaries) using numerical techniques such as 

the finite difference or finite element method. 

One can obtain the neutron diffusion equation by employing the Fick’s law which is 

acceptable on the scale of the full-core calculation. It is written as: 

 ( ) ( ) ( )g g gJ r D r rφ= − ∇  (2.3.3) 

Skipping over the derivation, the diffusion equation is written as: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

ex

0

, ' ', , ,

, , ' , '

, , '

, ' ' ,

t s

f

r ED E r E dE

r E v r E r E d

r E r E r E r E

r E Q r EE

φ φ φ

χ φ

∞

∞

Σ Σ →

Σ

−∇ ∇ + −

= +






 (2.3.4) 

Mathematically, diffusion theory is valid when the following assumptions are satisfied: 1) 

highly scattering medium; 2) a few mean free paths away from the boundaries or external 

sources; 3) isotropic scattering. However, diffusion theory is widely used in full-core reactor 

analysis and it is sufficiently accurate to provide a quantitative prediction. The reason is that 

one can employ the transport theory to generate the effective averaged cross sections and 

diffusion coefficients with associated discontinuity factors to create a computational model 

for which the diffusion theory is valid. Similar to transport equation (2.3.2), the equation 

(2.3.4) can be written in a more compact form: 
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 ( ) ( )ex, ,r E Q r Eφ =H  (2.3.5) 

where H here denotes the neutron diffusion operator and H is defined as 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

, ' '

, , ' , '

, , , , , '

, ' '

t s

f

D E r E dE

r E v r E r E d

r E r E r E r E r

E E

E

r

φ φ φ

χ φ

∞

∞

= −∇ Σ Σ∇ + − →

− Σ





H 

 

 
2.4 Adjoint Operators  

The form of the diffusion/transport equation introduced in the preceding section is 

known as the forward equation, in the sense that neutrons are followed forward in time from 

their birth to their loss from the nuclear reactor system. A related form of the forward 

equation is the adjoint form: in the adjoint view, the solution basically tells you that what 

contribution each part of the problem makes to the response of interest at a given position in 

the nuclear reactor system. Moreover, the adjoint solutions have a clear physical significance 

as the “importance” of neutrons within a particular system. This has a couple of uses: for 

shielding calculations, it can tell you how particles are getting through the shield so that one 

can add shielding more profitable; for reactor physics analysis, generalized perturbation 

theory is combined with properties of adjoint operators and equations to calculate the 

response variations without having to re-solve the entire forward equation.  

If ( )ψ α  and ( )φ α  in Eq. (2.1.9) are any “well behaved” functions, in the sense that 

they satisfy certain boundary and  continuity conditions, then a Hermitian or self-adjoint 

operator M is one for which the inner products  and , ,ψ φ φ ψM M  are equal, i.e., 
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 , ,ψ φ φ ψ=M M  (2.4.1) 

In the treatment of neutron diffusion/transport theory, the operators and the functions on 

which they operate, e.g., the neutron flux, are real and complex conjugates are not required. 

However, the operator associated with the diffusion/transport equation is not self-adjoint. If 

an operator A is not self-adjoint, it is possible in the following way to define an operator *A  

that is adjoint to A. The operator , *A , will operate on functions *ψ , often called adjoint 

functions, which may satisfy boundary conditions different from those satisfied by functions 

φ  on which A operates. The adjoint operator, *A , is then defined by the requirement that  

 * * *,,ψ φ φ ψ= AA  (2.4.2) 

for any “well behaved” functions φ  and *ψ . The neutron transport operator P, as shown by 

(Bell 1979), is not self-adjoint. In other words, if ( ), ,r Eψ Ω  and ( ), ,r Eφ Ω  are functions of 

( ), ,r EΩ  satisfying the required continuity and boundary conditions, then  

 , ,ψ φ φ ψ≠P P  (2.4.3) 

As indicated earlier, however, it is possible to define an operator *P , adjoint to P, so that any 

function ( )* , ,r Eφ Ω  fulfilling continuity and boundary conditions, which may be different 

from those on ( ), ,r Eφ Ω , will satisfy the relationship 

 * * *,,φ φ φ φ= PP  (2.4.4) 
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where ( )* , ,r Eφ Ω  is sometimes referred to as the adjoint (angular) flux or, more commonly, 

as the adjoint function; ( ) ( )* and , , , ,r E r Eφ φΩ Ω  are any two functions satisfying the 

appropriate boundary and continuity conditions for the neutron forward and adjoint flux, 

respectively. By considering the left side of Eq. (2.4.4), it is possible to derive the necessary 

form for *P  and the boundary conditions on ( )* , ,r Eφ Ω . For simplicity, however, the 

procedure adopted here will be to write down the expression for the adjoint operator and one 

can find the proof in many different references (Bell 1979, Duderstadt, Hamilton 1976). 

Let us consider the function ( ), ,r Eφ Ω  satisfies the free-surface boundary conditions; 

thus, ( ), , 0r Eφ Ω =  for all r on the convex boundary and all incoming neutron directions. 

Then the adjoint function will satisfy the boundary conditions that ( )* , , 0r Eφ Ω =  for all r on 

the boundary and for all outgoing directions. Moreover, it is assumed that both ( ), ,r Eφ Ω  

and ( )* , ,r Eφ Ω  are continuous functions of space, so that no difficulties arise when their 

gradients are computed. Then, in accordance with the definition of the adjoint transport 

operator, *P , in Eq. (2.4.4),  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

* * *

*

4 0

*
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*
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π
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Ω = −Ω Ω + Σ Ω

−

∇

Ω Σ Ω → Ω Ω

− Σ Ω Ω
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 (2.4.5) 
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The following differences should be noted between *P  as given by Eq. (2.4.5) and P as 

defined by Eq. (2.3.2): (a) the gradient terms have opposite signs; (b) the before and after 

parts of the scattering function ( ), ' ', ,s E ErΣ Ω → Ω  have been interchanged, i.e., 

*', ' ,  in  becomes , ', '  in E E E EΩ →Ω Ω →ΩP P ; (c) the terms fvΣ  and χ  have been 

interchanged.  

Similarly, the adjoint operator to Eq. (2.3.5) for neutron diffusion theory is written as: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

* * * *

0

0

*

' ,, , , , ,

,

' '

, , ' , ' '

t s

f

D E r E dE

v r E r E r E

r E r E r E r E r E

EE dr

φ φ φ

χ φ

∞

∞

Σ Σ →

− Σ

= −∇ ∇ + − 



H 
 (2.4.6) 

where ( )* ,r Eφ  is the adjoint flux. 

 

2.5 Generalized Perturbation Theory 

 In this dissertation, the term “response” refers to an observable output, such as nuclear 

power density distribution, detector response, or reactivity, of reactor system whose value is 

to be evaluated in a reactor physics or shielding analysis. There are usually two types of 

encountered responses: (1) integrals of the neutron flux or (2) ratios of these integrals. 

Examples are given in the following: 

 ( ) ( ) ( ) ( )
0 4

, , , , , , ,
Vd dr E r E r E r E d dEdVR

π
φ φ

∞
Σ Ω ≡ Σ Ω Ω=     (2.5.1) 

 
( ) ( )
( ) ( )

1

2

, , , ,

, , , ,

r E r E

E
R

r E r

φ
φ

Σ Ω
Σ

=
Ω

 (2.5.2) 
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where 1 2, ,dΣ Σ Σ  are cross sections, and ( ), ,r Eφ Ω  is the neutron flux determined by the 

neutron transport equation (2.3.2) or diffusion equation (2.3.5). Generally, we assume that φ  

is determined by solving an equation of the form 

 ( ) exQα φ =A  (2.5.3) 

where ( )αA  is a linear operator, the components of kα ∈  represent the input parameters 

and exQ  is an inhomogeneous fixed source. When ( )αA contains space derivatives, 

Equation (2.5.3) is a boundary value problem (BVP) with specified boundary conditions in 

order to have a unique solution, examples are the neutron diffusion calculation and neutron 

Boltzmann transport calculation. When ( )αA  contains first-order time derivatives, the 

equation becomes an initial value problem (IVP) with specified initial time conditions, such 

as the burnup equation in nuclear reactor depletion calculation and point kinetic equation in 

nuclear dynamics system. When exQ  is equal to zero, the equation can be an eigenvalue 

problem, for which the operator ( )αA  is singular. Generally speaking, the operator ( )αA  

depends on input parameters, e.g. cross sections, material compositions, material 

temperatures, half-lives, etc., and hence the solution φ  is dependent on the special values of 

those parameters. Therefore, the responses implicitly depend on all parameters showing in 

the system equation (2.5.3) for φ  and explicitly on the parameters appearing in the response 

functionals, e.g., 1 2, ,dΣ Σ Σ  in Eq. (2.5.1) and Eq. (2.5.2). The purpose of perturbation theory 

is to determine the response variations corresponding to the perturbations in the input 
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parameters. In particular, the solution φ  is a function of space, energy, and direction, which 

is implied but not shown in the operator notation used here. Moreover, numerical technique 

should be utilized to obtain the solution to the continuous equation (2.5.3). This is because 

analytical solutions are available only for a few simplified models with very specific 

geometries. In this dissertation, the numerical solutions for the neutron transport and burnup 

calculations are obtained using SCALE 6.1 which is originally developed and maintained by 

Oak Ridge National Laboratory for nuclear safety analysis and design. Hence, the numerical 

discretization and the application of the approximate boundary conditions lead to a matrix 

system of the form: 

 exqφ =A  (2.5.4) 

where n n×∈A   and ex
nq ∈  are numerically-discretized matrix operator and external 

source, respectively; in principle, nφ ∈  is the numerical solution that approaches the 

continuous equation (2.5.3) as the phase-space meshes are refined.  

 

2.5.1 Generalized Perturbation Theory for Source-Driven Problem 

Consider a source-driven transport model described by: 

 ( ) ( )exQα φ α=P  (2.5.5) 

or in the form of discretization scheme: 

 exqφ =P  (2.5.6) 
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where ( )αP  is the transport operator defined in Eq. (2.3.2), ( )exQ α  is the external source, 

and finally both ( )αP  and ( )exQ α  depend on the model’s k input parameters that are 

described by a vector α . Next, consider an integral response functional (e.g., a system 

characteristic) ( ),R α φ  that is defined in Eq. (2.5.1). The GPT variational formalism employs 

an auxiliary functional of the form: 

 ( ) ( ) ( )( )* *
ex,, , ,K R Qφ α αα φ φ α  = − Γ Γ − P  (2.5.7) 

where *Γ  is the Lagrange multiplier associated with the constraint in Eq. (2.5.5). Note that if 

φ  is the exact solution to the Eq. (2.5.5), the response becomes equal to the auxiliary 

functional, i.e., K=R. Similarly, for a given perturbation in the input parameters, the K 

functional becomes: 

 *' , ','K K α φ→ Γ    

where the prime superscripts will be used throughout this dissertation to denote the values at 

perturbed conditions. Like before, with 'φ  being the exact solution to the perturbed system, 

i.e., 

 ( ) ( )ex' ' 'Qα φ α=P  (2.5.8) 

The perturbed response and auxiliary functional remain equal: 

 ' ' K RK R δ δ ==  

Unlike the response ( ),R α φ , where φ  implicitly depends on the input parameters, the 

functional iK  depends explicitly on all input parameters, as well as φ  and *
iΓ . The first-order 
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GPT proceeds by expanding 'K  about the unperturbed conditions and neglecting second- 

and higher-order terms which gives: 

 *
*

' , , ,
K K K

K K δα φ
α

δ δ
φ

∂ ∂ ∂+ + + Γ
∂ ∂ ∂Γ

≈  (2.5.9) 

The idea of the variational formalism is to make the auxiliary functional stationary with 

respect to all variables except the input parameters. This is done by equating the first-order 

derivatives of the auxiliary functional with respect to the variables * and φ Γ  to zero as 

follows: 

 ( )* *0 d

K α
φ

∂ =  Γ =
∂

ΣP  (2.5.10) 

 ( ) ( )ex*
0

K
Qφα α∂ =  =

Γ∂
P  (2.5.11) 

Thus, the first-order approximation for the variation in the response reduces to: 

 
( ) ( ) ( )( )

( ) ( )

*
x

ex*

e

,

,,
, ,

, ,d

K

R

K

Q

Q

δ
α

φ
δα δα

α α

δα

α αα φ

δ δα
α

α α
φ

α
φ

≈

Γ −
−

∂ ∂
= Σ Γ

∂ ∂

∂
∂

∂∂
=

∂ ∂

 
+ − 

 

P

P

 (2.5.12) 

 
( ) ( )ex*, ,d

Q
R K

α
δ δ δ δα

α α
α

φ φ
∂ ∂ 

+ − 


≈ Σ
∂ ∂ 

= Γ
P

 (2.5.13) 

The first term ,dδ φΣ  on the RHS of Eq. (2.5.13) can be readily determined since it is a 

function of the parameters perturbations only, it is referred to as the direct effect. The second 
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term requires a single solution of the adjoint model defined in Eq. (2.5.10). This term, 

denoted as the indirect effect, is evaluated as many times as there are perturbations. In 

practice, even with a large number of parameters perturbations, this cost is very small 

compared to the cost needed to solve Eq. (2.5.11) for the forward flux or Eq. (2.5.10) for the 

adjoint flux. 

 

2.5.2 Generalized Perturbation Theory for Critical Eigenvalue Problem 

Consider the steady-state radiation transport eigenvalue problem with the appropriate 

boundary condition over a given domain for the unperturbed system: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4 0

0

, , , , , ' ' ', ' , , ', '

' , ' ' ,, '

,

4

t s

f

r

r

r E r E r E d dE E E r E

E dE v r E E r E

π

φ φ φ

λ χ φ
π

∞

∞

Ω Ω + Σ Ω − Ω Σ Ω∇ → Ω Ω

= Σ

 




 (2.5.14) 

with boundary condition on the incoming flux ( ) ( )inc, , , ,r E r Eφ φΩ = Ω  and r on the 

boundary. Rewrite Eq. (2.5.14) in a more compact form 

 ( ) ( )( ) 0α αλ φ− =L F  (2.5.15) 

or in the form of discretization scheme 

 ( ) 0λ φ− =L F  (2.5.16) 

where ( )αL  and ( )αF  are operators that describe the radiation transport loss and 

production operators with appropriate boundary condition, respectively; λ  is the smallest 

eigenvalue (equal to 1/ effk ) associated with the eigenfunction φ  which denotes the neutron 
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flux. Finally, the ( )αL , ( )αF  and λ  depend on the k model parameters described by a 

vector α . The neutron flux is normalized by the following equation:   

 ,h Nφ =  (2.5.17) 

where h  is a vector of weights that determine the normalization condition and N is the 

normalization constant. Without loss of generality, we assume for simplicity that h  is 

independent of α . In practical calculations, the flux is often normalized based on the total 

power generated hence h  is expected to depend on the fission cross sections and energy 

production per fission.  

For the eigenvalue problem, the GPT variational formalism employs an auxiliary 

functional of the form: 

 ( ) ( ) ( ) ( )( )* * **, , , , , , ,K N R N h Nφ λ α φα φ α φ λ α φΓ  = − − − −  Γ L F  (2.5.18) 

where ( ),R α φ  is given in Eq. (2.5.1), *N  and *Γ  are the Lagrange multipliers associated 

with the two constraints in Eq. (2.5.17) and Eq. (2.5.15), respectively. Note that if φ  and λ  

are exact solutions to the forward model, the response becomes equal to the auxiliary 

functional, i.e., 

 K R=  

Similarly, for a given perturbation in the input parameters, the K functional becomes: 

 * *' ', ', ', ,K K Nλα φ Γ →    

As before, with 'φ  and 'λ  being the exact solutions to the perturbed system, i.e.,   

 ( ) ( )( )' ' 0' 'λ φα α− =L F  (2.5.19) 
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with neutron flux normalized by: 

 , 'h Nφ =  (2.5.20) 

Therefore, the perturbed response and auxiliary functional remain equal: 

 ' 'K R K Rδ δ=  =  

Expanding 'K  about the unperturbed conditions and neglecting second and higher orders of 

variations results in: 

 * *
* *

' , , , , ,
K K K K K

K K N
N

δ δφ δλ δ δ
φ λ

α
α

∂ ∂ ∂ ∂ ∂≈ + + + + Γ +
∂ ∂ ∂ ∂Γ ∂

 (2.5.21) 

Let the auxiliary functional be stationary with respect to all variables except the input 

parameters. This is obtained by equating the first-order derivatives of the functional with 

respect to the variables * *, , ,Nφ λ Γ  to zero, thus: 

 ( ) ( )( )* * *0 d

K
N hα λ α

φ
Γ Σ∂ =  − = −

∂
L F   (2.5.22) 

 ( )*0 , 0
K α φ
λ

Γ∂ =  =
∂

F  (2.5.23) 

 
*

0 , N
K

h
N

φ∂ =  =
∂

 (2.5.24) 

 ( ) ( )*
0 0

K α λφ φα∂ =  − =
∂Γ

FL  (2.5.25) 

The *N  is determined by requiring the RHS of Eq. (2.5.22) to be orthogonal to the forward 

neutron flux, i.e., 

 ( )* * ,
, 0

,
d

d N h N
h

φ
φ

φ
− = 

Σ
=Σ   (2.5.26) 
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Then the first-order approximation for the variation in the response reduces to: 

 

( ) ( ) ( )( )
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 (2.5.27) 

 
( ) ( )*,,dR K
α

φ φ φ
α

δ δ δ λ δα
α α

∂ ∂
Σ Γ

∂
 

= ≈ − − 
 ∂

FL
 (2.5.28) 

As before, the direct effect ,dδ φΣ  on the RHS is easy to determine since it is a function of 

the parameters perturbations only. The indirect term 
( ) ( )*,
α

φ φ
α

λ δα
α α

∂ ∂ 
− 


Γ

∂ ∂
FL

 

requires a single solution of the adjoint model in Eq. (2.5.22). This term is evaluated as many 

times as there are perturbations. In practice, even with a large number of parameters 

perturbations, this cost is very small compared to the cost needed to solve Eq. (2.5.25) for the 

forward flux or Eq. (2.5.22) for the adjoint flux. 

To estimate the first order of variations in the eigenvalue, first-order GPT uses: 

 

( ) ( )

( )

*

*1

,

,st

α α
φ φ λ φ

λ
φ

δ
α

α
δ

φ

α
α

∂ ∂
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− 

 =

L F

F
 (2.5.29) 

where the subscript ‘1st’ indicates a first-order variational estimate, and *φ  is the 

fundamental solution calculated from the following unperturbed adjoint equation: 
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 ( ) ( )* ** *α φ λ α φ=L F  (2.5.30) 

It is important to note that an exact variational estimate for the eigenvalue λ  that is valid for 

any parameter perturbation can be obtained from:  

 
( )

( )( )
*

*

, '

, '

φ λ φ
λ

φ α φ
δ δ

δ
δ

−
=

+

L F

F F
 (2.5.31) 

where 'φ  is the perturbed forward flux, δ L  and δF  are perturbations to the operators 

( )αL  and ( )αF , respectively. The drawback to this approach is that one must execute the 

forward model again to obtain the perturbed flux. Our objective is to avoid doing that and 

still approximate the exact variation in the eigenvalue and other responses to the user-defined 

precision.  

Before concluding this section, we would like to note that the adjoint operator in Eq. 

(2.5.22) is singular which necessitates a special solution strategy to ensure that the solution 

(i.e., the generalized adjoint) is not contaminated by components from the null space of this 

operator. The traditional approach is to first identify the nullspace as the solution to Eq. 

(2.5.30), the fundamental adjoint solution, and as the solution of Eq. (2.5.22) is iteratively 

sought, the null space component is removed using a Gram-Schmidt orthogonalization 

approach (ArfKen 1985). In the rest of the discussion, whenever reference is made to solving 

the adjoint model m times, it is implied that one has already solved Eq. (2.5.30) once and 

employed the solution to remove the nullspace components when solving Eq. (2.5.22) m 

times.  
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2.6 Range-Finding Algorithm 

Range finding algorithms (RFA) have been primarily developed in the linear algebra 

community and the machine learning community to determine an upper bound on the error 

resulting from constraining the range of a matrix to a subspace (Halko, Martinsson & Tropp 

2011). Past research in the nuclear engineering community has also shown that the use of 

random matrix-vector products could be employed to find subspaces for the ranges of general 

rectangular matrices (Abdel-Khalik 2004). The algorithm employed in (Abdel-Khalik, Bang 

& Wang 2013) is summarized here for the sake of a complete discussion. Let m n×∈X   be a 

general matrix operator whose elements cannot be accessed directly, however the following 

operation is possible for a given user-defined vector θ :  

 ω θ= X  (2.6.1) 

The objective is to find the effective range of the matrix X defined by a matrix Q such that: 

 user
T ε≤−X QQ X  (2.6.2) 

where userε  is user-defined tolerance. The range of Q  constitutes a subspace with size of r 

that capture most of the action X , and we would like r to be as small as possible. It has been 

shown by (Halko, Martinsson & Tropp 2011), that the conditions in Eq. (2.6.2) could be met 

with a high probability { }1 min , 10 sm n −− ×  by employing only r+s matrix-vector products of 

the form in Eq. (2.6.1). In practice, s is a small integer, and the error estimator is reliable in a 

range of circumstances when we take s = 10. This may be achieved as follows: 

1. Let s be a small integer; 
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2. Let 0d  represent the current estimate of the effective rank of the matrix X; 

3. Pick 0d + s random vectors: 
01, , d sθ θ + ; 

4. Calculate: 
0i i dω θ += X , , ,1i s=  , ,i iw θ= X  0,1,i d=  , 

5. Pick d additional random vectors: 1, , dξ ξ ; 

6. Calculate: 
0

,d i iw ξ+ = X , ,1i d=  ; 

7. Find an orthonormal set via SVD or Gram-Schmidt algorithm such that: 

0 01 1{ }, , }, { ,d d d dspan w span qw q ++ =  ; 

8. Let ( )0

01
m d d

d dq q × +
+ =  ∈Q   ; 

9. Calculate: ( ) , 1 ,,T
i i i sz ω= − =I QQ  ; 

10. Let 0 0d d d= + ; 

11. If 
1 2,,

2
10 maxuse

i
r i

s
zε

π =
<


, go back to step 5; 

12. Let 0r d= ; 

This algorithm is based on the observation that when a matrix is multiplied by random 

vectors, the resulting vectors are expected to be independent with a very high probability. If 

the matrix has a low rank representation that satisfies the condition in Eq. (2.6.2), then one 

can find this subspace with at most r matrix vector product. Furthermore, this algorithm 

could be employed with minor modification to find the subspace for the variation in the 

solution of Eq. (2.5.4).  
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We first introduce the perturbed system with respect to the input parameters α  for the 

Eq. (2.5.3): 

 ( ) ex' ' Qα φ =A  (2.6.3) 

or in terms of numerical discretization 

 ex' ' qφ =A  (2.6.4) 

Substituting Eq. (2.5.4) into Eq. (2.6.4), one can obtain the following equation: 

 ( )1δφ δ φ− ′= − A A  (2.6.5) 

where δφ φ φ′= −  and 'δ = −A A A . It can be clearly seen from Eq. (2.6.5) that the δφ  lies in 

the subspace ( ){ }1 'span
δα

δ φ− ∈AA  generated by input parameters perturbations. 

Considering that ( ) maxrank rδ =A , therefore, ( ) ( )1
maxrank rank rδ δ− = =A AA , and the size 

of the explored subspace is less than or equal to maxr . The main question remains as to how 

to determine the range of matrix operator ( )1δ−A A . Note that this could be emulated by 

selecting input parameters with random perturbations in Eq. (2.6.5).  

This completes the identification of the explored subspace.  The assumption is that the 

variation in the solution of Eq. (2.5.4) will belong to a subspace with size of r such that the 

discrepancy between the exact solution and those constrained to the subspace is below the 

user-defined tolerance. This behavior is achieved as follows: 

1. Given a mathematic model described as: ( ) ex ex or Q qα φ φ= =AA ; 

2. Read user-defined accuracy for the state variations, e.g., userε ; 
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3. Let [ ]0 =Q , the 0n×  empty matrix , i = 0, and max user10ε ε= ; 

4. Let i = i + 1; 

5. Randomly perturb input parameters within their user-defined ranges of perturbations; 

6. Execute the given model and record the snapshots: ' n
i iδ φφ φ− ∈=  ; 

7. Find an orthonormal set via SVD or Gram-Schmidt algorithm such that: 

1 1{ }, , ,{ },i ispan s qpan qδφ δφ =   and , ,  for , ,1, ,i j i jq i jq rδ= =  ; 

8. Append the vector iq  to form: [ ]1
i

i
n

i iq ×
− ∈=Q Q  ; 

9. Calculate , ,  for ,1,ij j iq jδβ φ= =  , and Let [ ]1 iβ β β=  ; 

10. Calculate ,i iz δφ β= −Q  and let max 2izε = ; 

11. If max userε ε≥ , go back to step 4; 

12. Let d0 = i; 

13. Let s be a small integer; 

14. Pick s random perturbed input parameters: 1, , sα α ; 

15. Execute the given model and record the snapshots: ' , 1, ,n
k k skφδφ φ ∈= − =  ; 

16. Calculate , 0, ,  for 1, ; 1,, ,j k j kM j kd sq δφ= = =  , and Let [ ] ,, j kj k
M=M ; 

17. Calculate: [ ] ,
, ,1,k k k

z k sδφ= − =Q M


 , where [ ] ,k
M

  is the kth column of M; 

18. Let theory
1 2,,

2
10 max k

k s
zε

π =
=


; 

19. If user theoryε ε< , go back to step 5; 



www.manaraa.com

47 
 
 

 

 

20. Let 0r d= ; 

The above algorithm, denoted hereinafter as the range-finding algorithm, is employed in 

this dissertation to identify with quantifiable accuracy a reduced basis space for the state 

variations, such that the following equations holds with probability at least 1 10 sn −− × : 

 
1

user,
r

i
i iq q δδφ φ ε

=

≤−  (2.6.6) 

or in a more compact form: 

 userδφ β ε≤−Q  (2.6.7) 

where 1rβ ×∈  and [ ] , ,  for 1 ,,ii
q i rβ δφ= =  . 
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CHAPTER 3. EPGPT METHODS 

 

3.1 Overview  

This dissertation employs the EPGPT methods to evaluate the state-based responses 

variations in order to reduce the computational cost in nuclear reactor calculations. In 

previous studies, estimation of higher-order accuracy up to exact solutions for the flux 

variations (1) entailed the use of preconditioned iterative methods (Maldonado, Turinsky & 

Kropaczek 1995, Moore, Turinsky 1998, McKinley, Rahnema 2000, Maldonado, Turinsky 

1995) or (2) demanded the availability of an extensive set of higher orders of eigen-modes of 

the unperturbed forward and adjoint system equations (Gandini 1978b), or (3) required the 

precomputation of massive adjoint calculations for each phase-space point (McKinley, 

Rahnema 2000, McKinley, Rahnema 2002).  

The development presented in this dissertation is aimed essentially at enabling an 

efficient explicit or semi-explicit higher-order accurate treatment, based on the construction 

of the reduced basis space, of the flux shape variations caused by cross section perturbations, 

control rod insertions, material composition differentiations, and complete fuel assembly 

permutations at core level. The main difference between EPGPT and existing GPT is in the 

formulation and interpretation of the adjoint models employed to calculate responses 

variations. GPT formulates an adjoint problem that is dependent on the response of interest. 

It tries to capture via the adjoint solution the relationship between the response of interest and 

the constraints on the state variations, e.g., Eq. (2.5.22). This allows one to calculate directly 
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the changes in response without calculating the state variations. The EPGPT however 

divorces the adjoint model from the given responses meaning that the adjoint model is solved 

independently of the given responses. This is done based on a set of pseudo responses which 

captures all possible state variations. Moreover, it has been observed by many scientific 

communities that although the dimensionality of the state space is very high in order to 

render high fidelity simulation, the state variability can be well approximated by a subspace, 

often of much smaller dimension than the state space (Chaturantabut, Sorensen 2010, 

Carlberg, Bou-Mosleh & Farhat 2011, Bashir et al. 2008, Bui-Thanh, Willcox & Ghattas 

2008). Assume that all possible state variations belong to a subspace of size r. If r is much 

smaller than n (the size of the state space), one can recast GPT in terms of a set of r pseudo 

responses. In doing so, one recognizes that the remaining n r−  directions in the state phase 

space cannot change any response as the state does not vary along these directions.  

Consequently, we employ different conventions to relate the reference and perturbed 

states to distinguish EPGPT and GPT approach. The convention to be used for EPGPT is 

illustrated by the following example: 

 'α α αΔ = −  (3.1.1) 

 'φ φ φΔ = −  (3.1.2) 

 ( ) ( )'α αΔ = −P P P  (3.1.3) 

 ( ) ( )'α αΔ = −H H H  (3.1.4) 

 ( ) ( )'R R Rα αΔ = −  (3.1.5) 

 'λ λ λΔ = −  (3.1.6) 
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This convention will be maintained throughout this dissertation for EPGPT. αΔ  and φΔ  are 

known as the parameters perturbations and difference neutron flux, respectively. and Δ ΔP H  

are referred to as the perturbation operators. RΔ  is the variation in the response of interest. 

λΔ  is the variation in the eigenvalue for neutron critical eigenvalue problems.  

 

3.2 Preliminaries for EPGPT 

The general approach to identify the subspace for the state variations is provided in 

Section 2.6. In this section, we will discuss a little bit more about this reduced basis space. 

Eq. (2.6.5) may be re-written as: 

 ( )( )1T Tφ φ⊥ −⊥ ′ΔΔ += − QQ Q Q A A  (3.2.1) 

where n r×∈Q   and ( )n n r⊥ × −∈Q   are orthonormal matrices such T
n

T
n

⊥ ⊥
×+ =QQ Q Q I  is the 

identify matrix. In general, the matrices and ⊥Q Q  are free to choose. As mentioned in the 

previous Chapter, the majority of state variations could be shown to belong to a reduced basis 

space. Thus, one can choose the columns of the matrix Q  to span such subspace. Moreover, 

the columns of ⊥Q  could be selected to span the small state variations, assumed smaller than 

some user-defined tolerance criterion. We will denote the subspace spanned by the columns 

of ⊥Q  as the inactive subspace since it makes a minor contribution to the state variations. In 

contrary, we will denote the subspace spanned by the columns of Q  as the active subspace. 

Therefore, the error introduced in the state estimation is given by:  

 ( )( )1
error

Tφ φ−− ′Δ = − ΔI Q A AQ  (3.2.2) 
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Moreover, we utilize the range-finding algorithm to determine the matrix Q that will be 

employed in the derivation of EPGPT. 

As assumed, we can also expand the state variations in the active subspace as shown in 

the following equations: 

 

( ) ( ) ( )

( )
2 2

1

1 1

i i

r r

r

i

q

q

q qβ α β α βφ α

β α
=

Δ Δ +=

=

ΔΔ

Δ

+ +




 (3.2.3) 

where ,  for , 1 ,,,i j i jq i jq rδ= =  , and ( )  for 1,, ,i iq i rφβ αΔ = Δ =  ; ,i jδ  is the 

Kronecker symbol, and iq  , the ith column of Q, represents an orthonormal basis vector 

function in the active subspace which is only dependent on the state variations; while the 

coefficient ( )iβ αΔ  depends on the vector αΔ  only. Basically, there are two main different 

approaches to obtain the unknown coefficient ( )iβ αΔ  in the literature. The first one is based 

on the Bubnov-Galerkin (B-G) scheme. Considering the coefficient ( )iβ αΔ  is a function of 

input parameters perturbations, one need to exploit B-G scheme for each parameters 

perturbations. In particular, an alternative approach, i.e., adjoint-based GPT approach which 

can substantially reduce the computational cost incurred in obtaining state variations, has 

been successfully applied to nuclear reactor analysis since 1960s. In the following sections of 

this chapter, we will employ GPT to determine the unknown coefficient ( )iβ αΔ . The 

ultimate goal is to show that any higher orders of variations could be expressed in terms of 

reduced basis. 
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In this dissertation, we define some pseudo responses as follows: 

 , , 1,2, ,i iq i rR φ≡ =   (3.2.4) 

From the definition of pseudo response, one can observe the following important relation 

 ( ) , ,; 1,2,i i iR q i rφβ α = Δ = ΔΔ =   (3.2.5) 

This means one can determine the unknown coefficient ( )iβ αΔ  through evaluating the 

variations in the pseudo response iR . If ( )iβ αΔ  could be estimated efficiently with high 

accuracy, one can directly calculate similarly accurate estimates for the neutron flux, detector 

responses or reaction ratios variations. 

 

3.3 EPGPT for Source-Driven Problem   

For the source-driven problem, given by Eq. (2.5.6), one can write down the auxiliary 

functional for pseudo response iR  via employing a variational formalism: 

 ( )* *
ex, , , , 1, ,2,i i i i qK rR iα φ φ Γ Γ= =  −− P   (3.3.1) 

where *
iΓ  is the Lagrange multiplier associated with the constraint in Eq. (2.5.6). Exploiting 

the idea of the variational formalism that the functional iK  is stationary with respect to the 

variables *,  and iφ Γ . This is done by equating the first-order derivatives of the auxiliary 

functional with respect to the variables *,  and iφ Γ  to zero as follows: 

 **0i
i i

K
q

φ
∂ =  Γ =
∂

P  (3.3.2) 
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 ex*
0i

i

K
qφ∂ =  =

Γ∂
P  (3.3.3) 

Unlike GPT approach, EPGPT determines the exact variation in the functional iK  due to 

variations in ,  and α φ  which is given by: 

 

( )( ) ( )( )
( )

( )
( )

( ) ( )

*
ex ex

*
ex

* * *
ex

* * * *
ex

* * * *
ex

,

,

, , ,

,

,

, , , ,

, ,,

i i i

i i

i i i i

i i i i

i i i i

K q q

q

q

R

q

q q

q

q

q

φ φ φ φ

φ φ φ φ

φ φ φ

φ

φ

φ φ φ

φΓ + Δ −

Δ Γ

Δ Γ Γ Γ

Δ

Δ = Δ − + Δ + Δ

= − Δ + Δ + Δ Δ − Δ

= − Δ − Δ − Δ − Δ Δ

= − Δ − Δ − Δ − Δ Δ

= − − Δ − Δ − Δ Δ

Γ Γ Γ

Γ Δ Γ Γ

P P

P P P

P P P

P P P

P P P

 (3.3.4) 

Substituting Eq. (3.3.2) into Eq. (3.3.4) and rearranging results in: 

 ( )* *
ex, , , 1,2, ,i i iq rK iφ φΓ ΓΔ = − Δ − Δ − Δ Δ =P P   (3.3.5) 

We recall i iK RΔ = Δ , thus one can combine Eq. (3.2.5) and Eq. (3.3.5) to obtain: 

 ( ) ( )* *
ex, , , 1,2, ,i i iq i rβ α φ φΔ = − Δ − Δ − Δ =Γ ΔΓP P   (3.3.6) 

Note that the first term in the RHS of Eq. (3.3.6) is the linear approximation for ( )iβ αΔ , 

while the second term in the RHS of Eq. (3.3.6) denotes the non-linear effects in ( )iβ αΔ  

with respect to the input parameters perturbations. If we neglect the second term in the RHS 

of Eq. (3.3.6), we can obtain the first-order approximation for the unknown coefficients 

( )iβ αΔ : 

 ( ) ( )*
ex1

, , 1,2, ,i ist
q i rβ α φΔ Γ= − Δ − Δ =P   (3.3.7) 
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Therefore, one can evaluate the first-order approximation of Eq. (3.2.3) via only r adjoint 

solutions: 

 ( )( ) ( )*
ex1 1

1 1

,
r r

i
i i i is

i
t st

qq qβφ α φ
= =

Δ = =Δ Γ− Δ − Δ  P  (3.3.8) 

This is denoted hereinafter as the first-order EPGPT for source-driven problem.  

In many situations, one needs to consider the non-linear effects in the neutron flux 

corresponding to the large perturbations in the input parameters. For example, control rod 

insertion, adjustment of moderator densities and burnable poison rod densities. How can we 

evaluate the non-linear effects in the neutron flux without re-solving the forward system? We 

address this question by introducing the higher-order EPGPT. 

We first rewrite the Eq. (3.3.6) into a more compact vector form: 

 lin non-linβ β β= +  (3.3.9) 

where  

 ( ) ( )1

T

rβ β α β α= Δ Δ    

 
( ) ( )

( ) ( )

* *
lin e

1

1 x

1

x e

1

, ,
T

T

st t

r

r s

q qβ φ φ

β α β α

 = − Δ − Δ ΔΓ Γ

Δ

− Δ 

 =  Δ

P P


 

 1
* *

non-lin , ,
T

rφ φβ  = − Δ ΔΓ Δ Γ Δ P P  

The term φΔ ΔP  involves the second and higher orders of variations. Recalling 

( )
1

r

j j
j

qαβφ
=

Δ Δ= , one can obtain 
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( ) ( )

( ) ( )

( )

( )

1

1
1 1

1
1 1

1 1

* *
non-lin

* *

* *

* *
1 1

1
* *

, ,

, ,

, ,

, ,

, ,

r

r r

j j r j j
j j

r r

j j j r j
j j

r r

T

r

T

r

r

T

q q

q q

q q

q q

φ φ

α

β

β β

β β

α

α

β

α

α

β

α

= =

= =

 = − Δ Δ Δ Δ 

    
= − Δ Δ    

     

 
= − Δ

Γ Γ

Γ Δ Γ Δ

Δ Γ Δ Γ

Γ Γ Δ

ΔΓ

Δ 
 

 Δ Δ    =     Δ Δ  Γ 

 

 

P P

P P

P P

P P

P P









   



β





= C

 (3.3.10) 

where r r×∈C  , denoted hereinafter as the parameter perturbation-induced matrix, is defined 

as 

 

*

*

1

1

*
1

*

1, ,

, ,

r

r r r

q q

q q

Γ Γ

≡

Γ Γ

 Δ Δ
 
 
 

Δ Δ  

P P

C

P P



  



 

Substituting Eq. (3.3.10) into Eq. (3.3.9) results in 

 linβ β β= +C  (3.3.11) 

Solving Eq. (3.3.11) for β , one can obtain 

 ( ) 1

linr rβ β−
×= −I C  (3.3.12) 

where r r
r r

×
× ∈I   is a r r×  identity matrix. Eq. (3.3.12) implies that one can calculate the 

exact coefficients using r forward and r generalized adjoint evaluations. Note that the 

computational cost of Eq. (3.3.12) mainly depends on the evaluation of C  and linβ . 
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Therefore, the exact variation in the neutron flux of Eq. (3.2.3) can be approximated using 

the following equations within user-defined tolerance: 

 ( ) ( )
1

1

linr

r

i i
i

rqφ α β ββ −
×

=

ΔΔ = = = − Q Q I C  (3.3.13) 

This completes the derivation of the higher-order EPGPT for source-driven problem. 

The EPGPT for source-driven systems can be summarized as follows: 

Algorithm: EPGPT for Source-Driven Systems 

Step 1: Given a mathematical model described by: ( ) ( )exqα φ α=P ; 

Step 2: Execute the given mathematical model and record the reference flux φ ; 

Step 3: Read user-defined accuracy for the neutron flux variations userε ; 

Step 4: Let [ ]0 =Q , the 0n×  empty matrix; 0i = , and max user10ε ε= ; 

Step 5: DO WHILE smax u erεε ≥ ; 

Step 6: Let 1i i= +  

Step 7: Randomly perturb all input parameters as follows: 'α α α= + Δ ; 

Step 8: Execute the forward model and record the perturbed flux iφ ; 

Step 9: Calculate the flux variation: i iφ φ φΔ = − ; 

Step 10: Find an orthonormal set { }
1j

i

j
q

=
 via the Gram-Schmidt algorithm such that: 

              1 1{ }, , ,{ },i ispan s qpan qφ φΔΔ =  , where , ,  for 1,, , i j i jq j iq δ= =  ; 

Step 11: Update the matrix [ ]1ii iq−=Q Q ; 

Step 12: Calculate , ,  for ,1,j j iq ijβ φ= Δ =  , and Let [ ]1 iβ β β=  ; 
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Step 13: Calculate the orthogonal projection of iφΔ  onto the active subspace : βQ ; 

Step 14: Calculate the projection residual: ,i iz φ β= Δ −Q  and let max 2izε = ; 

Step 15: END WHILE;  

Step 16: Execute forward system s more times, and calculate: theory
1 2,,

2
10 max k

k s
zε

π =
=


; 

Step 17: If user theoryε ε< , then t oax rym heε ε=  and go back to step 5;  

Step 18: Let r i= ; 

Step 19: Calculate the adjoint solutions for the adjoint systems: * *
i iqΓ =P , i = 1, …, r; 

Step 20: Calculate 1st-order evaluation of β : [ ] ( )*
lin ex,

i i qβ φ− Γ= Δ − ΔP , i = 1, …, r; 

Step 21: Calculate 1st-order approximation for neutron flux variations: lin1st
φ βΔ = Q ; 

Step 22: Calculate the matrix C: [ ] *

,
,ii jj

q≡ Γ ΔC P , i, j = 1, …, r; 

Step 23: Calculate higher-order evaluation of β : ( ) 1

linr rβ β−
×= −I C ; 

Step 24: Calculate higher-order approximation for neutron flux variations: 

              ( ) 1

linr rφ β−
×Δ = −Q I C ; 

Note that the bulk of the computational burden in this algorithm is in constructing the active 

subspace (Step 8) and solving the adjoint systems with respect to the pseudo responses (Step 

19) where both the forward model and adjoint model are executed r  times. In order to 

calculate the upper error bound for EPGPT, we need to solve the forward model s more times. 

The rest of the computational burden involves only linear algebra operations which are 

computationally cheap when compared to the cost of executing the forward and/or adjoint 
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model. For example, the operation in Step 20 involves the evaluation of the inner product of 

the form: *,i φΓ ΔP . This operation is similar to the *,φ φΔP  operation required by first-

order GPT approach, but now is executed r times with *φ  replaced by *
iΓ . Similarly, we need 

to execute the operation *,i jqΓ ΔP  in Step 22 2r  times with *φ  replaced by *
iΓ  and φ  

replaced by iq  to calculate parameter perturbation-induced matrix C. It is clear that we can 

readily evaluate the response variations by employing the approximated neutron flux from 

Step 21 or Step 24. In fact, the EPGPT can be divided into two phases. The first phase is a 

pre-computation phase meaning that it is done only once, i.e., Step 1 to Step 19. The second 

phase is a response evaluation phase that evaluates for a given response and a given 

parameters perturbation the exact-to-precision variation in the response, i.e., Step 20 to Step 

24. All necessary forward model and adjoint model executions are carried out in the pre-

computation phase. For a given response, the response evaluation phase calculates the exact 

variation in the response using only inner products operations, which are computationally 

inexpensive compared to the execution cost of forward and adjoint models. 

 

3.4 EPGPT for Critical Eigenvalue Problem  

The most common application of perturbation theory is in predicting the variation in the 

critical eigenvalue corresponding to a small perturbation made to the reactor. In addition, 

perturbation theory has also been employed to estimate the uncertainty of the multiplication 

factor due to uncertainties in cross section data.  
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In this section, we will extend the EPGPT to the critical eigenvalue problems (i.e., Eq. 

(2.5.16) and Eq. (2.5.17)). We first introduce a set of auxiliary functionals for the pseudo 

responses iR  via variational formalism: 

 ( ) ( )* ***, , , , , , ,  for 1, ,i ii i iiK N R N h N i rα φ λ φ φ λ φΓ Γ  = − − − − =  L F   (3.4.1) 

where iR  is defined by Eq. (3.2.4), *
iN  and *

iΓ  are the Lagrange multipliers associated with 

the constraints in Eq. (2.5.17) and Eq. (2.5.16), respectively. Exploiting the idea of the 

variational formalism that the functional iK  is stationary with respect to the variables φ , λ , 

*
iN , and *

iΓ . This is done by equating the first-order derivatives of the auxiliary functional 

with respect to the variables φ , λ , *
iN , and *

iΓ  to zero as follows: 

 * * * * *0 ,  for 1, ,i i i
i

i

K
q N h i r

φ
λ∂ =  − = −Γ =

∂
ΓL F   (3.4.2) 

 *0 , 0,  for 1, ,i
iK

i rφ
λ

∂ =  = =Γ
∂

F   (3.4.3) 

 
*

0 ,i

i

K
h N

N
φ∂ =  =

∂
 (3.4.4) 

 
*

0 0i

i

K φ λ φ∂ =  − =
∂Γ

L F  (3.4.5) 

The *
iN  is determined by requiring the RHS of Eq. (3.4.2) to be orthogonal to the forward 

flux:  

 ( )* * ,
, 0 ,  for 1, ,

,i i
i

i

q
q N h N i

h
r

φ
φ

φ
− =  = =   (3.4.6) 
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Before continuing the detailed derivation for EPGPT, we will first define two different 

operators representing the critical eigenvalue neutron transport equation to shorten the 

derivation. 

 λ−≡P L F  (3.4.7) 

and 

 λ λ λΔ Δ − Δ − Δ − Δ≡ ΔP L F F F  (3.4.8) 

We now can express Eqs. (3.4.1), (3.4.2) and (3.4.5) as  

 ( )** * *, , , , , , ,  for 1, ,i i ii i iK N R N h N i rφ λ φα φ  = − − − =Γ Γ P   (3.4.9) 

 * * * ,  for 1, ,i iiq N h i rΓ = − =P   (3.4.10) 

 0φ =P  (3.4.11) 

Similarly, unlike GPT, EPGPT determines the exact variation in the functional iK  due to 

variations in α , φ , and λ  which is given by: 

 

( )

( )
( )

* *

* * *

* * * *

* * * *

*

*

*

, ,

, , , , ,

, , , ,

, , ,

i i

i

i

i

i i

i i i i

i i i i

i i i i

K R N h

q N h

q N h

q N h

φ

φ

φ

φ φ φ φ

φ φ φ φ

φ φ φ

φ φ

Δ = Δ − Δ − Δ + Δ + Δ Δ

= Δ − Δ Δ − Δ − Δ Δ

= − Δ

Γ

− Γ Γ Γ

− Γ Γ Γ

Γ

Δ − Δ − Δ Δ

= − − Δ Γ Γ− Δ − Δ Δ

P P P

P P P

P P P

P P P

 (3.4.12) 

Substituting Eq. (3.4.10) into Eq. (3.4.12) results in: 

 * *, , ,  for 1,2, ,i ii rK iφ φΔ = − Δ − Δ Δ =Γ ΓP P   (3.4.13) 

Recall that i iR KΔ = Δ  and ( )i iRβ αΔ = Δ , we can then evaluate ( )iβ αΔ  using the following 

relation: 
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 ( ) * *, , ,  for 1,2, ,i i i riφ φβ αΔ = − Δ − Δ Δ =Γ ΓP P   (3.4.14) 

Note that the first term in the RHS of Eq. (3.4.14) is the linear approximation for ( )iβ αΔ , 

while the second term in the RHS of Eq. (3.4.14) denotes the non-linear effects in ( )iβ αΔ  

with respect to the input parameters perturbations. If we neglect the second term in the RHS 

of Eq. (3.4.14), we can obtain the first-order approximation for the unknown coefficients 

( )iβ αΔ : 

 ( ) *

1
, , 1,2, ,i ist

i rβ α φ= − Δ =Δ Γ P   (3.4.15) 

Therefore, one can evaluate the first-order approximation of Eq. (3.2.3) via only r adjoint 

solutions: 

 ( )( )1
1

1
1

*,
r r

i i
i i i ist st

q qφ α φβ
= =

Δ = = −Δ ΔΓ  P  (3.4.16) 

This is denoted hereinafter as the first-order EPGPT for critical eigenvalue problem.  

Similar to the source-driven problem, we can employ the parameter perturbation-induced 

matrix C to determine the non-linear effects for the neutron flux variations. First, we will 

rewrite the Eq. (3.4.14) into a more compact vector form: 

 lin non-linβ β β= +  (3.4.17) 

where  

 ( ) ( )1

T

rβ β α β α= Δ Δ    
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( ) ( )

* *
lin

1 1

1

1

, ,r

r

T

T

st st

β φ φ

β α β α

 Γ Γ

Δ Δ

= − Δ Δ 

 =  

P P


 

 1
* *

non-lin , ,
T

rφ φβ  = − Δ ΔΓ Δ Γ Δ P P  

Recall that ( )
1

r

j j
j

qαβφ
=

Δ Δ= , thus 

 

( ) ( )

( ) ( )

( )

( )

1

1
1 1

1
1 1

1 1

* *
non-lin

* *

* *

* *
1 1

1
* *

, ,

, ,

, ,

, ,

, ,

r

r r

j j r j j
j j

r r

j j j r j
j j

r r

T

r

T

r

r

T

q q

q q

q q

q q

φ φ

α

β

β β

β β

α

α

β

α

α

β

α

= =

= =

 = − Δ Δ Δ Δ 

    
= − Δ Δ    

     

 
= − Δ

Γ Γ

Γ Δ Γ Δ

Δ Γ Δ Γ

Γ Γ Δ

ΔΓ

Δ 
 

 Δ Δ    =     Δ Δ  Γ 

 

 

P P

P P

P P

P P

P P









   



β





= C

 (3.4.18) 

where the parameter-induced matrix r r×∈C   is defined as 

 

*

*

1

1

*
1

*

1, ,

, ,

r

r r r

q q

q q

Γ Γ

≡

Γ Γ

 Δ Δ
 
 
 

Δ Δ  

P P

C

P P



  



 

Substituting Eq. (3.4.18) into Eq. (3.4.17) results in 

 linβ β β= +C  (3.4.19) 

Solving Eq. (3.4.19) for β , one can obtain 

 ( ) 1

linr rβ β−
×= −I C  (3.4.20) 
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where r r
r r

×
× ∈I   is an identity matrix. Therefore, the exact variation in the neutron flux of 

Eq. (3.2.3) can be approximated using the following equation within user-defined tolerance: 

 ( ) ( )
1

1

linr

r

i i
i

rqφ α β ββ −
×

=

ΔΔ = = = − Q Q I C  (3.4.21) 

This is denoted hereinafter as the higher-order EPGPT for critical eigenvalue problem.  

Note that, the deceptively simple operator notations lead to the identity expression for 

the neutron flux variations in both Eq. (3.4.21) for critical eigenvalue problem and Eq. 

(3.3.13) obtained from source-driven problem. However, there’s a significant difference 

between this two equations. The neutron flux variations in critical eigenvalue problems 

depend on the variation in eigenvalue since ΔP  is dependent on λΔ  in Eq. (3.4.8). In the 

previous derivation, we presume that the exact variation λΔ  in the eigenvalue is known, thus 

the problem degenerates to a source-driven problem. The question raised here is how to 

evaluate the exact variation λΔ  without re-solving the forward equations for a given active 

subspace. We will answer this question in the rest of this section and we will demonstrate our 

approach with several numerical cases in Chapter 6.  

Recalling Eq. (2.5.31), one can rewrite the exact eigenvalue variation as: 

 
( )* *

* *

, ,

, ,

φ φ φλ
λ

φ
φ φ φ φ

Δ − Δ + Δ Δ
Δ =

+ Δ

L F P

F F
 (3.4.22) 

where ΔP  is defined in Eq. (3.4.8). Since φΔ ΔP  depends on λΔ , we invoke a Rayleigh 

quotient like iterative approach to solve for λΔ : 

(a) Given kλΔ , the kth iterate for λΔ ; 
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(b) Calculate: k k kλ λ λΔ = Δ − Δ − Δ − Δ ΔP L F F F ; 

(c) Calculate: linβ  and C ; 

(d) Calculate: ( ) 1

link r rφ β−
×Δ = −Q I C  

(e) Calculate: k kφΔ ΔP  

(f) Calculate the next iterate: 
( )* *

1 * *

, ,

, ,

k

k

φ φ φ
λ

φ φ φ φ
λ φ

+

Δ − Δ + Δ Δ
Δ =

+ Δ

L F P

F F
 

(g) Continue until stopping criteria satisfied. 

In practice, the iterative approach for eigenvalue variation is summarized as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Iterative Algorithm for the Variations in the Eigenvalues 
 

{ } { }

( )

[ ] ( )

*

1 1

5
0 1

* * *

*
1

=0, , ,
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rr

i ii i

ii
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i
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φ φ φ φ
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φ φλ
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= =

−
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= Δ
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[ ] ( ) [ ]

[ ] ( ) [ ] ( )

*
2

2
* *

1

* *
21 , ,
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      Calculate ,  and , ;

      1;

      If  

            Calculate ,  and , ;

            1

      End if 

En

;  t

d
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i

e

 f

ii

i ii i

i j i ji j i j

c q

d d

i i

j

q q

j j

r

λ

φ
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= Γ Δ − Δ = Γ Δ
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= − Γ Δ − Δ = − Γ + Δ
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L F F

C L F C F F

 



www.manaraa.com

65 
 
 

 

 

 

 

 

 

 

 

 

The algorithm of EPGPT for critical eigenvalue systems is similar to the algorithm 

adopted for the source-driven systems. For the critical eigenvalue systems, we need to add 

the Raleigh quotient like iterative approach for the estimation of eigenvalue into the 

algorithm only.  

  

( ) ( ) ( )
2

1

2

1

1

12

1

1

Let 1;

Do While 

      Calculat

      Calculat

e 

e the  pa

      Calculate the next iterate: 

rameter perturbation-induced mat

      

rix: 

r

k

k k

k

T

k k r k

k

k

C c

r r

c d d

A C

B
k k

λ λ
λ

λ λ

η

λ +

−

−
×

=
>

= −

= − −

Δ − Δ
× Δ

Δ Δ− −
+Δ =

=

C CC

I C

1

End While

+
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CHAPTER 4. EVALUATION OF USER-DEFINED RESPONSE VARIATIONS 

 

4.1 Overview 

This chapter describes how to recast the two typical responses encountered, defined in 

Eq. (2.5.1) and Eq. (2.5.2), in nuclear reactor calculations in terms of the r pseudo responses 

determined from the previous chapter. Before embarking on the practical responses 

variations evaluations, we first recall the expression β : 

 ( ) 1

linr rβ β−
×= −I C  (4.1.1) 

where  

 
( ) ( )* *

ex ex

l

1

in

1
* *

, ,  Source-Driven

, ,                       Eigenvalue

r

r

T

T

q qφ
β

φ

φ φ

 − Δ − Δ Δ − Δ 

 − Δ Δ 

 Γ Γ= 
 Γ Γ

P P

P P




 

and 

 

*

*

1

1

*
1

*

1, ,

, ,

r

r r r

q q

q q

Γ Γ

≡

Γ Γ

 Δ Δ
 
 
 

Δ Δ  

P P

C

P P



  



 

The significant difference between the source-driven problem and eigenvalue problem lies on 

the determination of ΔP . Note that ΔP  for source-driven problem depends only on the 

parameters perturbations which is easily determined, whereas ΔP  for eigenvalue problem 

depends on both parameters perturbations and eigenvalue variations. One should adopt 

particular approaches, i.e., Raleigh quotient like iterative approach adopted in Chapter 3, to 

evaluate the variations in the eigenvalue. Furthermore, β  in Eq. (4.1.1) can be pre-
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determined by employing r+s forward calculations and r generalized adjoint calculations. In 

the next section, we will show that we can succinctly describe the variations in the responses 

by employing the pre-determined β . 

 

4.2 Reaction Rate Calculation  

The definition of reaction rate is given by Eq. (2.5.1), and the variation in the response is 

given by: 

 , , ,d d dR φ φ φΔ = ΔΣ + Σ Δ + ΔΣ Δ  (4.2.1) 

As mentioned earlier, the direct term ,d φΔΣ  is the easiest to calculate since it does not 

depend on the state variations. The second and third terms can be related to the active 

subspace by expanding both dΣ  and dΔΣ  as follows:  

1
d d

r

i i
i

S q ⊥

=

= +Σ Σ
 
and 

1

r

i i
i

d dS q ⊥

=

ΣΔ Δ + ΔΣ=  

where ,di iS q= Σ , ,di iS qΣΔ = Δ , d
⊥ ⊥Σ ∈  , and d

⊥ ⊥ΔΣ ∈ . Now substituting in Eq. 

(4.2.1): 

 
( ) ( )

1

, , ,

, , ,
r

i i
i

d d d

d i d d

R

S S q

φ φ φ

φ φ φ⊥ ⊥

=

Δ = ΔΣ + Σ Δ + ΔΣ Δ

= ΔΣ + + Δ Δ + Σ + ΔΣ Δ
 (4.2.2) 

Note that this is an exact expression for the variation in the response. Recalling that the state 

varies along the active subspace  only, one may ignore the last term on the RHS thereby 

reducing Eq. (4.2.2) to: 
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( )

PE GPT
1

, ,

,

d

r

i

T
d

i i
i

R S S q

w

φ

β

φ

φ
=

Δ = ΔΣ + + Δ Δ

= +ΔΣ


 (4.2.3) 

where [ ]1 1 2 2, , ... ,
T

r rw S S S S S S= + Δ + Δ + Δ .  

 

4.3 Flux Ratios Calculation  

Recall the definition of flux ratios that is given by Eq. (2.5.2): 

 1

2

,

,
R

φ
φ

Σ
=

Σ
 (4.3.1) 

To calculate the exact variation in this response, one could repeat the above procedure for 

both the numerator and denominator, treating them as two different responses. Therefore, the 

response variations can be determined by: 

 1
E GPTp

2 2

1,

,

T

T

w
R

wφ β
φ βΔ

Δ
Σ

+
=

ΔΣ
+

 (4.3.2) 

where 

 ( ) ( )1 1 1 1 1 1, ,  r

T
w q q = Σ + ΔΣ Σ + ΔΣ   

 ( ) ( )2 2 2 2 21, , r

T
w q q = Σ + ΔΣ Σ + ΔΣ   
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4.4 Error Analysis for Response Variations  

In this section, we invoke the reaction rate as the response to calculate the error bound 

on the response variations. Recalling that EPGPT presumes  
1

r

i
i iqφ β β

=

Δ = = Q , thus Eq. 

(4.2.1) could be approximated by: 

 
PE GPT , , ,d d dR φ β βΔ = ΔΣ + Σ + ΔΣQ Q  (4.4.1) 

We can then evaluate 

 ( ) ( )
PE GPT , ,d dR R β βφ φ− = Σ Δ − + ΔΣ ΔΔ Δ −Q Q  (4.4.2) 

Employing the Cauchy-Schwarz inequality, the error in the response due to EPGPT 

approximation may be constrained by: 

 
P 2 2 2E GPT userd d d dR R βφ ε− ≤ Σ + ΔΣ Δ − ≤ Σ + ΔΔ ΣΔ Q  (4.4.3) 

We recall that user2
φ β ε≤Δ −Q . This expression has two important implications:  

a) for any response of the form: ,dR φ⊥= Σ  where  and d d
⊥ ⊥ ⊥ ⊥Σ ∈ ΔΣ ∈  , the 

corresponding response variation as predicted by EPGPT will be zero with the error upper-

bounded by 
2user d dε ⊥ ⊥Σ + ΔΣ ;  

b) for any response of the form : ,dR φ= Σ  where ,  and d dΣ ∈ ΔΣ ∈  , the corresponding 

response variation will depend on only r degrees of freedom (denoting the active responses) 

which describe the possible ways in which the state can vary for all possible parameters 

perturbations.  
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CHAPTER 5. AN ANALYTIC EXAMPLE 

 

The purpose of this chapter is to demonstrate EPGPT by solving a simple analytic 

example. Many of the properties discussed in Chapter 3 can be illustrated in this manner. The 

system considered for demonstration EPGPT is a two-group neutron balance problem with 

infinite homogenous medium. For this case, the transport operators are 2 by 2 matrices such 

that one can easily obtain the analytic solution. The parameters for the first group are 

arbitrarily assigned as ,1 5tΣ = , ,1 3cΣ = , ,1 1fΣ = , ,1 1 0,s → =Σ  ,1 2 1s →Σ = , 1 4v = , and 

1 0.75χ =  where the symbols have their usual definitions. Similarly, the parameters for the 

second group are assigned as ,2 2tΣ = , ,2 1cΣ = , ,2 1fΣ = , ,2 1 0s →Σ = , ,2 2 0s →Σ = , 2 2v = , and 

2 0.25χ = . Notice that for each group the absorption ( )c fφ φΣ + Σ  equals the neutron 

production fv φΣ ; therefore, the system is critical and the neutron transport operator can be 

obtained: 

 ,1 ,1 1 ,2 1

,1 2 ,2 ,2 2

5 0

1 2
t s s

s t s

→ →

→ →

− −   
= =   − − −

Σ Σ Σ
Σ Σ Σ 

L  

and 

 
2

2 2 2

1 1 ,1 1 ,2

1 ,1 ,2

3 1.5

1 0.5
f f

f f

v v

v v

χ χ
χ χ

Σ Σ
Σ Σ

   
= =   

  
F  

Moreover, * T=L L , and * T=F F , the “T” superscript indicates algebraic transpose. The 

characteristic equation for this problem is: 
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 ( ) 5 3 1.5
det 0

1 2 0.5

λ λ
λ

λ
λ

− −
− = =

− − −
L F  (5.1.1) 

The fundamental forward solution is: [ ]1 and 3 / 7 4 / 7
Tλ φ= = . While the 

fundamental adjoint solution is: [ ]*1;  and 0.5 0.5
Tλ φ= = . Note that all fluxes are 

normalized to one for simplicity. The perturbation equation for λΔ  is illustrated by 

considering the perturbation given by: 

 ,1 0

0 0
cΔΣ 

Δ =  
 

L  

This perturbation represents a change in the capture cross section for the first group. The 

first-order estimation for the variation in λ  via GPT is: 

 
*

,1*1

, 3

20,
s ct

φ φ
λ

φ φ
= =

Δ
Δ ΔΣ

F

L
 (5.1.2) 

The characteristic equation for the perturbed system can be solved to obtain the 

following exact result for the variation in λ  resulting from the perturbation ,1cΔΣ : 

 ,1
Exact

,1

3

20
c

c

λ
ΔΣ

Δ
ΔΣ

=
+

 (5.1.3) 

Considering the flux is normalized, only one basis vector is needed for EPGPT 

calculation since there is only one degree of freedom in the neutron flux variations. This 

basis vector is obtained by the range-finding algorithm:  

 1 1/ 2 1/ 2
T

 = − q  
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The comparison of numerical results obtained using Eqs. (3.4.22), (5.1.2), and (5.1.3) is 

shown in Table 5-1, and the reduction errors of neutron flux are presented in Table 5-2. 

 

Table 5-1. Exact and Approximate Errors for λΔ  

,1

,1

c

c

ΔΣ
Σ  ExactλΔ (pcm) *

1ε (pcm) *
2ε (pcm) 

0.01 449.33 -0.67 0.00 
-0.01 -450.68 -0.68 0.00 
0.05 2233.25 -16.75 0.00 

-0.05 -2267.00 -17.00 0.00 
0.10 4433.50 -66.50 0.00 

-0.10 -4568.53 -68.53 0.00 
0.25 10843.37 -406.63 0.00 

-0.25 -11688.31 -438.31 0.00 
0.50 20930.23 -1569.77 0.00 

-0.50 -24324.32 -1824.32 0.00 
  *: 1 Exact 1stλε λ= −Δ Δ ; 

PExact2 E GPTλ λε Δ= −Δ  

 

Table 5-2. Errors in Neutron Flux 

,1

,1

c

c

ΔΣ
Σ

 *rel.rms  

0.01 1.43E-16 
-0.01 2.63E-16 
0.05 1.54E-16 

-0.05 1.78E-16 
0.10 1.67E-16 

-0.10 1.97E-16 
0.25 3.56E-16 

-0.25 9.82E-17 
0.50 1.44E-16 

-0.50 1.64E-16 

                           *:
PExact E GPT 22 Reference rel.rms= φ φ φ− ;  
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The first group capture cross section is randomly perturbed by 10%. The results 

calculated by EPGPT and first-order GPT are compared to those computed by solving the 

exact perturbed forward equation, as presented in Figure 5-1 for 100 different cases. The 

variational error shown in Figure 5-1 is defined as: 

 Variational Error: approxexactk kΔ Δ−  

where Δ implies a variation from the reference calculation, exactkΔ  and approxkΔ  denote the 

exact variation in k-eigenvalue estimated by direct forward perturbation and the variation 

estimated by EPGPT or first-order GPT. 

 

 
Figure 5-1. Comparison of Estimation Accuracy (100 cases) 
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CHAPTER 6. NUMERICAL RESULTS FOR EPGPT 

 

6.1 Examination of Active Subspace 

Two cases are studied to show the size of the active subspace is small compared to the 

number of input parameters (i.e., cross sections, number densities), and flux phase space. 

These cases are based on a realistic BWR model. Figure 6-1 depicts the lattice model 

analyzed; it is a benchmark of a stand-alone single assembly mini-core model designed by 

the OECD/NEA to assess the assumptions in current LWR standard lattice physics scheme 

(Ivanov et al. 2007). Main calculations are completed using SCALE 6.1. The neutron angular 

flux is obtained by the NEWT module in SCALE 6.1. NEWT (New ESC-based Weighting 

Transport Code) is a multigroup discrete-ordinates radiation transport computer code that 

allows 2-D neutron transport calculations using complex geometric models. The data library 

v5-44 (or 44GROUPNDF5) is employed. In this model, S-6 quadrature, P-1 scattering (P-2 

in the moderator), spatial stopping criteria of 710ε −= , and an eigenvalue stopping criteria of 

710ε −=  are used. There’re total 4624 computational cells for this lattice model. Thus, the 

dimension of scalar flux space is 444 2624 03456× = . Additionally, total of 9 different fuel 

rods containing 29 different isotopes are adopted for this model. 
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Figure 6-1. A 7 7×  BWR Benchmark Lattice Model 

 

To check robustness of the active subspace, we employ the range-finding algorithm to 

obtain the active subspace. In the first case, we calculate the flux variations with respect to 

the microscopic cross sections perturbations. All independent microscopic cross sections 

(i.e., inelastic scattering, effective (n, 2n), fission, capture, v , χ ) perturbations are randomly 

selected from a uniform distribution with 10% standard derivation relative to their reference 

values. The dimension of the perturbed parameters space is 7656 (i.e., 29 isotopes, 44 energy 

groups, and 6 reaction types). In total, 361 forward calculations are executed by NEWT, i.e., 

1 reference calculation, 350 perturbed calculations, and 10 extra perturbed calculations used 

to evaluate the residuals of flux variations. Figure 6-2 shows the singular value spectrum of 

350 flux variations. The components associated with singular values smaller than 510−  could 
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be easily contaminated by numerical errors, i.e. single precision for multigroup cross sections 

and the stopping criteria used for the lattice calculations.  

 

 
Figure 6-2. Singular Value Spectrum of 350 Flux Variations 

 

For a given perturbed configuration, the flux variations that cannot be explained by the 

subspace with size 350r =  are plotted in Figure 6-3 against the perturbed flux. The flux 

values are ordered in an increasing order to check whether there are any correlations rendered 

by the reduction process. This experiment is repeated for 10 different random model 

executions (i.e., T1-T10), to check whether the flux variations are well described by the 

active subspace. The .abs rms  of the flux variations that cannot be explained by the active 

subspace are compared in Figure 6-4. The .abs rms  metric is defined to be: 
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 exac a 2t pprox

1
.abs rms

n
φ φΔ= Δ−  (6.1.1) 

where the Δ  implies a variation from the reference calculation. The abs.rms calculates the 

discrepancy between the exact variation estimated by direct forward perturbation, exactφΔ , and 

the variation estimated by projection method, approxφΔ . 

In Figure 6-4, different sizes of the active subspace are employed to show that as the 

active subspace size is increased, one is able to enhance to meet tighter numerical tolerances. 

It also shows that the active subspace equally predicts flux variations for all possible input 

parameters perturbations. Also notice the saturation trend in Figure 6-4 which is expected 

since at one point, one cannot reduce the errors beyond the numerical tolerance employed in 

forward calculations. This phenomena asserts that the exact (within the precision of forward 

calculations) estimates of the flux variations could be employed using an active subspace of 

small size, in this case r = 250. This is a very small number when compared to the number of 

cross sections representing the input parameters to lattice calculations, the dimension of the 

flux field required to get accurate estimates, and the number of few-group cross sections 

evaluated at different points in lattice life and at different thermal hydraulics conditions. 
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Figure 6-3. Flux Variations outside the Active Subspace 

 

 
Figure 6-4. Flux Tolerance vs. Size of Active Subspace 
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In the second case, we employ the same lattice model to examine the active subspace for 

the depletion problem. We employ the TRITON module in SCALE 6.1 to do the depletion 

calculations. One calculates the flux variations with respect to the number densities 

perturbations at different depletion stages, which means the fuel burnup represents in this 

case the perturbation of the nuclear system. One has considered the lattice operating with a 

constant lattice-average power of 22.25MW/MTHM, during a 395-day burnup period. The 

burnup period was divided into 11 time steps. For each time step, one calculates the number 

densities of depletion nuclides existing in the depletion chains along the burnup period. There 

are 32 depletion isotopes, 11 time steps, and 9 different mixture types in this lattice model, 

thus the dimension of total input space is 3168. We randomly select the depletion period 

within 395 days, and interpolate the number density of each nuclide using the pre-calculated 

number density of 11 depletion time steps. Then, the NEWT module will be executed with 

the interpolated number densities as input to calculate the scale flux values. The reference 

flux is obtained at the initial depletion step. Figure 6-5 shows the singular value spectrum of 

290 flux variations. In Figure 6-6, different sizes of the active subspace are employed to 

show that as the active subspace size is increased, one is able to enhance to meet tighter 

numerical tolerances. Again, it shows that the active subspace equally predicts flux variations 

for all possible input parameters perturbations. Also notice that the saturation trend in Figure 

6-6 which is expected since at one point, one cannot reduce the errors beyond the numerical 

tolerance employed in forward calculations. This phenomena asserts that the exact (within 
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the precision of forward calculations) estimates of the flux variations could be employed 

using an active subspace of small dimension, in this case 200r = . 

 

 
Figure 6-5. Singular Value Spectrum of 290 Flux Variations 
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Figure 6-6. Flux Tolerance vs. Size of Active Subspace 

 

6.2 Error Metrics for EPGPT Numerical Analysis 

In order to demonstrate that the EPGPT could be employed to calculate the neutron flux 

variations, we can envision computing two extra quantities: 

 
( )

exact approx 21
Flux variation: rms

n

φ φ
φ

Δ − Δ
=

Ε
 (6.2.1) 

 
[ ]

( )
exact approx

Flux Variation: . i iabs rel
φ φ

φ
 Δ − Δ =

Ε
 (6.2.2) 

where the neutron flux nφ ∈  and Δ  implies a variation from the reference calculation. The 

rms calculates the discrepancy between the exact variation estimated by direct forward 
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perturbation, exactφΔ , and the variation estimated by EPGPT or first-order GPT, approxφΔ . All 

rms errors are normalized based on the reference average flux value, i.e., ( )φΕ . Similarly, 

the abs.rel calculates the relative discrepancy between each element in the exact variation 

estimated by direct forward perturbation, exactφΔ , and each element in the variation estimated 

by EPGPT or first-order GPT, approxφΔ . 

In neutron critical eigenvalue calculations, we usually encounter the effective 

multiplication factor effk  (or k-eigenvalue) which is the reciprocal of the λ -eigenvalue. We 

will define the following metric to measure the accuracy of variations in effk : 

 
exact approx

0

Eigenvalue variation: .
k k

k abs rel
k

Δ − Δ
− =  (6.2.3) 

where 0k  denotes the k-eigenvalue at the reference case, and the Δ  implies a variation from 

the reference calculation as before. The exact variation, i.e., exactkΔ , in the k-eigenvalue is 

estimated by directly solving the forward perturbed equation; while the variation estimated 

by EPGPT or first-order GPT is denoted as approxkΔ . 

 

6.3 EPGPT Results for Diffusion Source-Driven Problem 

This case study is based on a one dimensional one speed diffusion model with reflective 

boundary conditions. This model consists of four different unit cells, and each unit cell is 

provided with homogenized cross sections. The setup is shown in Figure 6-7, the cross 
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sections and input parameters are defined in Table 6-1, and the flux shape is shown in Figure 

6-8. In this model, the flux has 40 dimensions representing 40 spatial locations, i.e., 40φ ∈ .  

 

Table 6-1. Model Specification * 

Region Domain (cm)
tΣ sΣ fΣ  fv 0μ Q  

ih  

1 0,1  3 1 0.5 1.5 0 1 0.1 
2 1,2  10 8 0 0 0 0 0.1 
3 2,3  3 1 1.025 2 0 0 0.1 
4 3,4  10 1 0 0 0 0 0.1 

*Diffusion coefficient is defined as 
( )0

1

3 t s

D
μΣ

=
− Σ

; ih  is the mesh interval for region i. 

 

 

Figure 6-7. Model Layout 
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Figure 6-8. Forward Flux Shape 

 

The EPGPT algorithm is executed and is tested for a perturbed model such that all cross 

sections perturbations were randomly selected from uniform distributions within 15% 

relative to their reference values. The exact perturbed responses are calculated using direct 

forward perturbation which requires a full forward model execution. To study the 

performance of EPGPT for different sizes of the active subspace, the rms metric defined in 

Eq. (6.2.1) are employed. For this case study, n = 40. Figure 6-9 shows rms errors of neutron 

flux against the size of the active subspace.  For reference, the rms error calculated by first-

order GPT is shown on the same graph as a horizontal line.  
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Figure 6-9. Analysis of EPGPT Errors versus r 

 

Analysis of Figure 6-9 indicates that first-order GPT errors are comparable to EPGPT 

when the active subspace is too small to properly capture all possible responses variations. 

As the size of the subspace is increased, it starts to capture larger portions of responses 

variations, and the associated errors are reduced accordingly. In these calculations, the 

associated machine precision is of the order of 10-16. Note that the accuracy of EPGPT 

approaches machine precision as the size of the active subspace is increased. From a practical 

considerations however, one does not need to reach machine precision since the accuracy of 

the flux calculations is limited by many other factors, e.g., numerical errors, input parameters 

uncertainties, and model form errors. Therefore in practice, a much higher, i.e., relaxed, error 
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tolerance would be acceptable, e.g., 10-5 or perhaps even more relaxed depending on the 

application. 

Next, Figure 6-10 compares the errors plotted in Figure 6-9 to the maximum theoretical 

error predicted by the EPGPT range-finding algorithm. Note that the maximum error is 

consistently higher than the exact error calculated by direct forward perturbations.  

 

 
Figure 6-10. EPGPT Theoretical and Exact Responses Variations 

 

To understand the impact of mesh refinement on the size of the active subspace, the 

previous results in Figure 6-9 and Figure 6-10 are repeated but now using a model with 80 
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comparison, let us pick a user-defined error tolerance, say st
pGPE 1T GPT

1

10
rms rms= .  From 

Figure 6-9 and Figure 6-11 the corresponding sizes of the active subspace to meet this error 

tolerance are 4 and 5, respectively. This result implies that despite the increase in the 

dimension of the flux phase space, the size of the active subspace required to maintain the 

same tolerance remains essentially the same. This is an important result as it shows the 

potential of EPGPT to combat the explosion in dimension of the flux space which is often 

sought via mesh refinement to achieve high accuracy predictions.  

 

 
Figure 6-11. Analysis of EPGPT Errors versus r ( w/ Refined Mesh ) 
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Figure 6-12. EPGPT Theoretical and Exact Responses Variations 

 

To provide some comparison of the performance of this method to other higher-order 

GPT methods, we adopt the method proposed by Rahnema for boundary conditions 

perturbations to apply to cross sections perturbations (see Appendix B). The applicability of 

this method to eigenvalue models has been demonstrated elsewhere, see Refs. (McKinley, 

Rahnema 2000, McKinley, Rahnema 2002). In Rahnema’s development, a single adjoint 

model evaluation is needed at each point in the flux phase space; this implies 40 adjoint 

model evaluations that must be pre-computed. These adjoints are then employed to calculate 

the response variations using an iterative scheme. Figure 6-13 shows these results. As 

expected the errors are very small and comparable to the errors produced by the proposed 

EPGPT.  
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It is important to remark here that this comparison is only employed as a sanity check. 

This follows as several other higher-order methods have already been established in the 

literature and rigorously proven to converge to the correct solution. So, there is little value in 

comparing different higher-order methods to one another since the exact variations could be 

calculated using direct forward perturbations. The important value of the comparison 

however is the reduction in the computational overhead required to reach the solution which 

is the main objective of this dissertation. As discussed earlier, the Rahnema’s approach 

requires an adjoint model evaluation for each point in the phase space. The EPGPT 

philosophy is however different, it determines the number of adjoint model evaluations 

needed to reach a user-defined error tolerance. Both approaches are expected to produce the 

same results if one calculates an adjoint function for each point in the phase space. However, 

the EPGPT provides more flexibility for practical engineering calculations, where one cannot 

afford to calculate that many adjoint model evaluations on a routine basis. In reality, for 

typical models, the flux phase space is too big to store the adjoint functions much less 

evaluate them. Moreover, real-world calculations do not require machine precision estimate 

of the responses variations. The EPGPT takes advantage of that by reducing the number of 

adjoint model evaluations. More importantly, it provides an upper bound on the error for the 

responses variations, a feature that is not currently provided by other higher-order variational 

methods. 
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Figure 6-13. Rahnema-Based Higher-Order GPT Method 

 

6.4 EPGPT Results for Diffusion Eigenvalue Problems 

Case Study I: A one-dimensional two-group heterogeneous diffusion model 

representing two fuel assemblies with reflective boundary conditions is employed to test 

EPGPT (Anistratov 2005). Each lattice involves 8 uniform unit cells. The state is described 

by the two-group flux solution. The input parameters are represented by the two-group cross 

sections. The model schematic is shown in Figure 6-14 and the associated specifications are 

listed in Table 6-2. In this model, the flux has 256 dimensions representing 128 spatial nodes 

with equal spatial intervals and 2 energy groups per node. The responses are the flux values 

evaluated everywhere in the space-energy phase space, i.e., 256φ ∈ . The first 128 values of 
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φ  denote the fast group flux, the last 128 values of φ  denote the thermal group flux. The 

reference flux distribution is shown in Figure 6-15. 

 

 

Figure 6-14. Model Layout 

 

Table 6-2. Cross Section Data * 

Materials Input Parameters 
1
tΣ  

1 1
,0s
→Σ  1 2

,0s
→Σ  1χ  2

tΣ  
2 2
,0s
→Σ  2

fΣ  2
fν  

MOX 0.2 0.185 0.015 1 1.2 0.9 0.3 1.5 
UO2 0.2 0.185 0.015 1 1.0 0.9 0.1 1.5 

Water 0.2 0.17 0.03 0 1.1 1.1 0 0 

*
1 21 1 2 1 2
0 0,0, , , , ,f f sν μ χ μ→Σ Σ  are all zeros, and diffusion coefficient is defined as 

1

3 r

g
g

t

D =
Σ

, where 

0

gg g g
tr t sμ= −Σ Σ Σ  and g is the energy group index . 
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Figure 6-15. Reference Flux Solution 

 

The EPGPT algorithm is executed, and is tested for a perturbed model such that cross 

sections perturbations, i.e., scattering, fission and v , were randomly selected from uniform 

distributions with 10% standard deviation relative to their reference values. The exact 

perturbed neutron flux is calculated using direct forward perturbation which requires a full 

forward model execution. Figure 6-16 compares the exact flux variations to those estimated 

by EPGPT employing an active subspace of size 20r =  employing abs.rel metric defined in 

Eq. (6.2.2); for reference the first-order GPT variations are also compared on the same figure. 

Figure 6-16 shows that the results calculated by EPGPT are two orders of magnitude more 

accurate than the first-order GPT approach. 
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Figure 6-16. Performance of EPGPT with r = 20 

 

To study the performance of EPGPT for different sizes of the active subspace, the rms 

metric is employed. Figure 6-17 condenses the errors of Figure 6-16 for all responses into 

one rms metric that is plotted against the size of the active subspace.  The rms metric is 

defined in Eq. (6.2.1) and n = 256 for this case. For reference, the rms error calculated by 

first-order GPT is shown on the same graph as a horizontal line. The x-axis in this figure runs 

from 1 to 256 over all space-energy indices for the flux. The values are ordered such that the 

first 64 values are the fast flux in the MOX lattice followed by 64 values for the fast flux in 

the UO2 lattice followed by the thermal flux values. 
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Figure 6-17. Analysis of EPGPT Errors versus r 

 

Analysis of Figure 6-17 indicates that first-order GPT errors are comparable to EPGPT 

when the active subspace is too small to properly capture all possible responses variations. 

As the size of the subspace is increased, it starts to capture a larger component of responses 

variations, and the associated errors are reduced accordingly. Note that the accuracy of 

EPGPT approaches machine precision as the size of the active subspace is increased. Next, 

Figure 6-18 compares the errors plotted in Figure 6-17 to the maximum theoretical error 

predicted by the EPGPT range-finding algorithm. Note that the maximum error is 

consistently higher than the exact error calculated by direct forward perturbations until the 

rms errors for responses are converged.  
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Figure 6-18. EPGPT Theoretical versus Exact Variational Errors 

 

As discussed before, the accuracy of estimated responses is dependent on the accuracy 

of the calculated eigenvalues. The eigenvalues’ calculation will converge very fast, but the 

error in the eigenvalues will be propagated to the responses’ calculation, as showed in Figure 

6-18, when we continue to increase the size of subspace after 150, we get no improvement 

for the flux calculation. Table 6-3 displays the results of the iterative procedure employed to 

update the eigenvalue with r = 10. The reference eigenvalue is 0 0.667λ = , and the 

perturbation results in a 0.0313 change, i.e., approximately 4.7% change from the reference 

value. The errors in the estimated variations in Table 6-3 is defined by: 
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5

pprox. 10abs error λ λ λ= − ×  
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where exactλ is calculated exactly using the perturbed forward model. The first-order GPT 

predicts approximately 90.8% of that change. The EPGPT results show that very accurate 

estimates are quickly obtained with again a relatively small size of the active subspace.  

 

Table 6-3. Eigenvalue Variational Estimate ( 10r = ) 

Iterations EPGPT ( ( ).abs error λ ) 1st-Order GPT ( ( ).abs error λ ) 

1 2.24E+01 2.86E+02 
2 -1.75E+00 - 
3 1.37E-01 - 
4 -1.07E-02 - 
5 8.33E-04 - 
6 -6.72E-05 - 
7 3.15E-06 - 
8 -2.35E-06 - 
9 -1.92E-06 - 

10 -1.95E-06 - 
11 -1.95E-06 - 

 
 

To check the adequacy of EPGPT for severe flux variations, the methodology is 

employed to estimate flux variations resulting from the insertion of a control rod. The control 

rod is simulated by significantly increasing the absorption cross section in the middle of the 

MOX lattice. The corresponding relative changes in the fluxes with respect to the expected 

reference flux values are shown in Figure 6-19. Notice that the group fluxes change by up to 

75% from their reference values. Figure 6-20 and Figure 6-21 show these results in a similar 

manner to Figure 6-17 and Figure 6-18, respectively. Table 6-4 repeats the results of Table 

6-3 but now with the control rod inserted.  
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Figure 6-19. Exact Flux Variations (w/ CR Insertion) 

 

 
Figure 6-20. Analysis of EPGPT Errors versus r (w/ CR Insertion) 
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Figure 6-21. EPGPT Theoretical vs. Exact Variational Errors (w/ CR Insertion) 

 

Table 6-4. Eigenvalue Variational Estimate ( 20r =  w/ CR Insertion) 

Iterations EPGPT ( ( ).abs error λ ) 1st-Order GPT ( ( ).abs error λ ) 

1 -1.31E+03 -4.11E+04 
2 -1.49E+01 - 
3 -1.07E+00 - 
4 -9.35E-01 - 
5 -9.34E-01 - 
6 -9.34E-01 - 

 
 

With EPGPT, the size of the error is reduced significantly with a very small active 

subspace. Moreover, despite the huge change in the eigenvalue (approximately a 43% change 

from the reference value of 0.667), the EPGPT iterative procedure is able to converge on the 
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exact variation with few iterations. Also, as shown before, the flux errors decrease with 

increasing the size of the active subspace. 

Case Study II: A seven-group neutron diffusion model in 1-D slab geometry with two 

fuel assemblies (Anistratov 2005) is employed for this case study. There’re total 224 cell-

averaged flux values for each group. The seven-group flux is denoted as: 

 [ ] ( )
1568 1

,1 224
, 224; 1, ,,  and ,  for 1 7,i gi g

i gφ φ φ×
+ − ×

∈ == =    (6.4.1) 

where ,i gφ  indicates the ith cell-averaged flux for group g. The input parameters are 

represented by the seven-group cross sections. The model scheme is shown in Figure 6-22. 

The cross sections are given in (Lewis et al. 2001). Neutron transport cross sections are 

considered as the total cross sections, this is because g
trΣ  is equal to g g g

a c sΣ Σ + Σ+  for each 

energy group as provided in (Lewis et al. 2001). As before, the diffusion coefficient is 

calculated as ( )0

1

3
gg

g

g
t s

D
μ

=
Σ Σ−

. 

 

 

 

 

Figure 6-22a. Unit Cell Design 
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Figure 6-22b. Unit Cell Layout  

 
Figure 6-22. Model Layout 

 

The EPGPT is employed to test for this model such that all cross sections are randomly 

selected from uniform distribution within 10% relative to their nominal values. Exact neutron 

flux solution is obtained by resolving the forward diffusion equation. Figure 6-23 compares 

the real errors in the flux (rms) calculated by the EPGPT to the theoretical error predicted by 

range-finding algorithm. The rms metric is defined in Eq. (6.2.1) and n = 1568 for this case. 

Note that the theoretical error is consistently higher than the exact error calculated by directly 

solving forward equation. Figure 6-24 shows the accuracy of EPGPT against the size of the 

active subspace; for reference, the flux variation error calculated by first-order GPT is shown 

on the same graph as a horizontal line. Note that one needs to solve the generalized adjoint 

equation 1568 times in order to obtain the first-order approximation as shown in Figure 6-24.  

 



www.manaraa.com

101 
 
 

 

 

 
Figure 6-23. Theoretical vs. Exact Variational Errors 

 

 
Figure 6-24. Analysis of EPGPT Errors vs. r 
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Next, Figure 6-25 shows the flux discrepancy between the exact flux variation and the 

flux variation estimated by EPGPT or first-order GPT; for reference, the exact flux variation 

is shown on the same graph. The x-axis in Figure 6-25 runs from 1 to 1568 over all space-

energy indices for the flux, and the errors in Figure 6-25 is defined in Eq. (6.2.2). Note that 

the results calculated by first-order EPGPT with only 80 basis vectors are comparable to the 

results estimated by first-order GPT, which means that one only need to solve the generalized 

adjoint equation 80 times, instead of 1568 times, in order to obtain the same accuracy as first-

order GPT. Moreover, one can obtain much accurate results with higher order EPGPT. 

 

 
Figure 6-25. Comparison of Estimation Accuracy 
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6.5 EPGPT for Neutron Transport Calculations 

The main computational calculations in this section are completed using SCALE 6.1. It 

is a comprehensive modeling and simulation suite for nuclear safety analysis and design to 

perform reactor physics, criticality safety, radiation shielding and so on (RSICC 2011). To 

implement the EPGPT, several modules of SCALE 6.1 are employed and some of them are 

modified for the purpose of the experiments, e.g. BONAMI/CENTRM, NEWT, SAMS, 

TSUNAMI-2D, etc. In particular, The BONAMI/CENTRM modules are self-shielding codes 

that can be used to generate self-shielded multi-group cross sections for subsequent criticality 

calculations (e.g., NEWT). NEWT is a multigroup discrete-ordinates radiation transport 

computer code that allows 2-D neutron transport calculations using complex geometric 

models. SAMS (Sensitivity Analysis Module for Scale) utilizes data from NEWT forward 

and NEWT adjoint neutron transport calculations to compute sensitivity coefficients for the 

system multiplication factor ( effk ) and reaction rate ratios. Additionally, we employ 

TSUNAMI-2D sequence in TRITON – a control module in SCALE for transport, depletion 

and sensitivity and uncertainty analysis – to perform automated, problem-dependent cross 

section processing in BONAMI/CENTRM, calculation of 2D forward and adjoint transport 

solutions in NEWT, calculation of sensitivity coefficients in SAMS. Currently, NEWT is not 

applicable to solve GPT equations with linear responses, e.g., reaction rates, and SAMS 

doesn’t perform variation calculations in effk  and neutron flux. These two modules have been 

modified in order to perform EPGPT calculations. Three different models have been adopted 

to exercise the modification in SCALE and EPGPT calculations. 
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CASE I: A simplified lattice model with seven uniform pin-cells is employed. Table 6-5 

provides the design characteristics and Figure 6-26 depicts the model analyzed. This model is 

modified from input file of NEWT sample 2 (Jessee, Dehart 2011). In this model, reflective 

boundary conditions are applied on all outer boundaries, and the cross section library v5-44 

(or 44GROUPNDF5) is employed. The control module TSUNAMI-2D is utilized to perform 

the reference calculation, i.e., calculations of fundamental forward and adjoint neutron flux. 

NEWT forward is employed to generate the active subspace with respect to perturbed 

microscopic multigroup cross sections. Modified NEWT generalized adjoint (or GPT) is 

utilized to calculate the generalized adjoint solutions with respect to pseudo responses. 

Modified SAMS will perform first-order GPT calculation by employing fundamental forward 

and adjoint solution and EPGPT calculations utilizing the active subspace and generalized 

adjoint solutions. All subsequent calculations are conducted by using MATLAB 2011a, e.g., 

eigenvalue iteration approach, flux variation reconstruction. In short, this sequence is denoted 

as TSUNAMI-2D (reference) – NEWT forward (identify active subspace) – Modified 

NEWT GPT (adjoint solutions) – Modified SAMS (EPGPT) – Post-processing.  
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Figure 6-26. Model Layout with Grid Structure  

 

Table 6-5. Lattice Design for Case I 

Parameters Data 
Fuel Lattice  

Lattice 7 uniform pin-cells 
Number of fuel rod 7 

  
Fuel rod  

Type fuel pellet MOX 
Initial fuel composition (atom/(cm.barn))  

U-235 5.5300E-05 
U-234 2.6436E-07 
U-238 2.1786E-02 
Pu-238 3.6128E-05 
Pu-241 1.3557E-04 
Pu-242 1.0233E-04 
Pu-240 3.7403E-04 
Pu-239 7.8717E-04 

Rod pitch (cm) 1.22 
Rod outer diameter (cm) 0.91 
Rod inner diameter (cm) 0.755 
Clad material Zircaloy-4 
Clad temperature (K) 620 
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In this model, S-6 quadrature, P-1 scattering (P-2 in the moderator), spatial and 

eigenvalue stopping criteria of 1.0E-9 are used for the NEWT forward calculation. The 

eigenvalue at the reference condition for this case is given by 1.040982effk = .  For the 

adjoint and generalized adjoint calculations, the spatial and eigenvalue stopping criteria of 

1.0E-5 are employed. There’re total 332 computational cells for this lattice model. Thus, the 

dimension of neutron angular flux space is 44 24 3 5 233 92 50× × = , i.e., 350592φ ∈ . 

Additionally, total of 7 uniform fuel rods containing 13 different isotopes are adopted for this 

model. The microscopic multigroup cross sections – fission, radiation capture, v  – of all 

isotopes are randomly perturbed by 30%± . The dimension of the perturbed parameters space 

is 1276α ∈ . In Figure 6-27, the singular value spectrum of 150 flux variations is presented. 

One can observe that the spectrum of the singular values is decaying rapidly. Note that after 

100th singular value, the magnitudes of them are below 10E-4 which is very small. Moreover, 

considering the precision of cross section values, i.e., single precision, and the stopping 

criteria used for LWR lattice calculations, i.e., typically 10E-4, the components associated to 

those small singular values can be neglected. 
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Figure 6-27. Singular Value Spectrum 
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subspace, the rms metric defined in Eq. (6.2.1) are employed. Figure 6-28 shows rms errors 
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Figure 6-28. Analysis of EPGPT Errors versus r 
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as a horizontal line. The perturbed eigenvalue is ' 1.108159effk = , and the exact variation in 

the eigenvalue is exact 6717.7pcmkΔ = . The error in Figure 6-29 is defined as: 

 5
exact approx 10k kΔ − Δ ×  (6.5.1) 

 
 

 
Figure 6-29. Eigenvalue Tolerance versus r 
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higher orders of variations for the proposed approach, since the first order of variation is pre-

calculated. Another important observation is that the estimated eigenvalue variation 

approaches the exact value after certain number of basis vectors (for this case, r = 40). The 

reason is that the larger portions of flux variations lie in the active subspace spanned by the r 

= 40 basis vectors. Furthermore, Figure 6-29 implies that if we estimate the flux variations 

with enough basis vectors, we can also obtain very accurate eigenvalue. 

In order to examine the accuracy of EPGPT for user-defined response, we define the 

following response for each energy group 

 ( ) ( ) ( ) ( )
0 4

' , '' ,
V

E E rR E dV E d EEd
π

δ φ φ
∞

= Ω − Ω =    (6.5.2) 

or approximated using numerical method: 

 , ,
1 1

,  for 1, ,
NOM NOA

i i g mg m
m

m
i

m
m

R V w g NOGφ
= =

= =    (6.5.3) 

where NOM, NOG, and NOA denote the total number of spatial meshes, the total number of 

energy groups, and the total number of directions, respectively; Vi denotes the volume for the 

ith cell, and wmm denotes the weight for the mmth direction. For this test case, NOG is equal 

44, thus we will evaluate 44 different responses using EPGPT. For comparison, the exact 

variations in these responses are calculated by NEWT forward. Figure 6-30 shows the 44 

responses values at the reference condition against the neutron lethargy u. The neutron 

lethargy u is defined as follows: 

 0ln
E

u
E

 =  
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Figure 6-30. Reference Response Values  

 

Figure 6-31 compares the responses variations estimated by the EPGPT to the direct 

forward calculation, and Figure 6-32 compares the relative responses variations estimated by 

the EPGPT to the direct forward calculation. Figure 6-33 shows discrepancies between the 

exact responses variations and the estimated responses variations by EPGPT for all 44 

responses. The discrepancy shown in Figure 6-33 is defined as 

 Pexact,g GPT,g

refer

E

ence,g

R R

R

Δ − Δ
 (6.5.4) 

where Δ  denotes a variation from the reference calculations. For comparison, the exact 

relative responses variations are also shown in Figure 6-33.  
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Figure 6-31. Estimation of Response Variations (r = 60) 

 

 
Figure 6-32. Estimation of Response Variations (Relative and r = 60) 
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Figure 6-33. Comparison of Response Estimation Accuracy (r = 60) 
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Figure 6-34. Comparison of Estimation Accuracy for Eigenvalue Variation (t = 27) 

 

 
Figure 6-35. Analysis EPGPT Errors for Angular Flux (t = 27) 
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CASE II: This case study is based on the Westinghouse fuel lattice with a 15 15×  pin 

cells employed in H. B. Robinson Unit 2 PWR model (Radulescu, Gauld & Ilas 2010). The 

modeling detail is provided in Figure 6-36 for H. B. Robinson Lattice BO-5 showing the 

location of burnable poison rods (BPRs), e.g., borosilicate glass absorber rods, and 

neighboring fuel rod N-9. Table 6-6 provides the design characteristics of lattice BO-5 and 

Table 6-7 describes the chemical composition and density of the burnable poison rod. The 

model is developed using a one-quarter lattice representation, taking advantage of the lattice 

symmetry. A reflective boundary condition was applied to the outer boundary of this 

configuration. Similar to case I, we employ the TSUNAMI-2D (reference) – NEWT forward 

(identify active subspace) – Modified NEWT GPT (adjoint solutions) – Modified SAMS 

(EPGPT) – Post-processing sequence to calculate the flux/response variations. The original 

input file of NEWT sample 4 provided by (Jessee, Dehart 2011) is modified for EPGPT 

study. In this model, the v5-44 cross section library is employed; S-4 quadrature, P-1 

scattering (P-2 in the moderator), spatial and eigenvalue stopping criteria of 1.0E-8 are used 

for NEWT forward calculation. The eigenvalue at the reference condition for this case is 

given by 1.036746effk = . For the adjoint and generalized adjoint calculations, spatial and 

eigenvalue stopping criteria of 5.0E-6 are employed. There’re total 3462 computational cells 

for this lattice model. Thus, the dimension of neutron angular flux space is 

44 12 18279334 2 66 × × = , i.e., 1827936φ ∈ . Additionally, 3 different types of rods are 

employed, and 24 different isotopes are adopted for this model. The microscopic multigroup 
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cross sections – fission, radiation capture, v  – of all isotopes are randomly perturbed by 

30%± . The size of the perturbed parameters space is 1408α ∈ . 

 

 

Figure 6-36. Model Layout and Grid Structure 

 



www.manaraa.com

117 
 
 

 

 

Table 6-6. Lattice Design for H. B. Robinson  

Parameters Data 
Reactor core  

Design Westinghouse, PWR 15 15×  
Lattice pitch (cm) 21.50364 
Reactivity control Soluble boron, BPR, and control rod

  
Fuel Lattice BO-5  

Lattice 15 15×  
Number of fuel rod 204 
Uranium weight (kg) 443.7 
Number of guide tubes 21 

  
Fuel rod  

Type fuel pellet UO2 
Pellet stack density (g/cm3) 9.55 
Initial fuel composition (wt% in U total)  

U-235 2.561 
U-234 0.023 
U-236 0.013 
U-238 97.403 

Rod pitch (cm) 1.43 
Rod outer diameter (cm) 1.0719 
Rod inner diameter (cm) 0.9484 
Pellet diameter (cm) 0.9294 
Clad material Zircaloy-4 
Clad temperature (K) 595 

  
Guide tube  

Material Zircaloy-4 
Inner radius (cm) 0.6502 
Outer radius (cm) 0.6934 

  
Burnable poison rod (BPR)  

Air outer diameter (cm) 0.5677 
SS304 outer diameter (cm) 0.6007 
Borosilicate glass outer diameter (cm) 1.0173 
SS304 outer diameter (cm) 1.1151 
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Table 6-7. Atom Densities for BPR 

Description Material Weight Percent Atom Density (atoms/cm·barn)
 
 
     
     BPR 

o-16 53.53 4.1979E-02 
b-10 0.696 1.7941E-04 
b-11 3.186 3.6046E-03 
na-23 2.82 1.5369E-03 
al-27 1.758 8.1645E-04 
si 37.63 1.6791E-02 
k 0.33 1.0577E-04 

 
 

In Figure 6-37, the singular value spectrum of 120 flux variations is presented. One can 

observe that the spectrum of the singular values is decaying rapidly. Note that after 120th 

singular value, the magnitudes of them are below 10E-4 which is typically used as the 

stopping criteria for LWR lattice calculations. 

 

 
Figure 6-37. Singular Value Spectrum 
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The EPGPT is executed and is tested for a perturbed case with respect to random 

microscopic multigroup cross sections perturbations. The exact values of perturbed neutron 

angular flux are calculated using direct forward calculation which requires a full NEWT 

forward execution. To study the performance of EPGPT for different sizes of the active 

subspace, the rms metric defined in Eq. (6.2.1) are employed. Figure 6-38 shows rms errors 

of neutron angular flux against different sizes of the active subspace. 

 

 
Figure 6-38. Analysis of EPGPT Errors versus r 

 

As before, similar characteristics can be observed from Figure 6-38. The first-order 

EPGPT errors are comparable to EPGPT when the active subspace is too small to properly 
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capture larger portions of flux variations, and the associated errors are reduced accordingly. 
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Figure 6-39 shows eigenvalue error, defined in Eq. (6.5.1), against the size of the active 

subspace. For reference, the eigenvalue error calculated by first-order GPT is shown on the 

same graph as a horizontal line. The perturbed eigenvalue is ' 0.981414effk = , and the exact 

variation in the eigenvalue is exact 5533.2pcmkΔ = − . 

 

 
Figure 6-39. Eigenvalue Tolerance versus r 
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Figure 6-40. Reference Response Values 

 

 
Figure 6-41. Estimation of Response Variations ( r = 55) 
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Figure 6-42. Estimation of Response Variations (Relative and r = 55) 

 

 
Figure 6-43. Comparison of Response Estimation Accuracy (r = 55) 
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The results presented in Figure 6-41, Figure 6-42 and Figure 6-43 show that higher-order 

EPGPT consistently provides accurate estimations for user-defined responses, whereas first-

order approximation cannot give sufficiently accurate results. 

Moreover, the estimation accuracy is examined by using 30 test samples (i.e., t = 30). As 

can be seen in Figure 6-44, the higher-order EPGPT using 55 basis vectors can evaluate the k-

eigenvalue (or effk ) variation more accurately than the first-order GPT approximation. 

Roughly speaking, the maximum exact variation in the eigenvalue is around 10% (or 

10,000pcm), the maximum discrepancy between first-order and exact variation is around 

0.4% of reference eigenvalue (or 400pcm), whereas the maximum discrepancy between 

higher-order EPGPT and exact variation is around 0.02% (or 20pcm). In addition, Figure 

6-45 shows the neutron flux rms error defined in Eq. (6.2.1) for all 30 test samples.  

 

 
Figure 6-44. Comparison of Estimation Accuracy for Eigenvalue Variation (t = 30) 
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Figure 6-45. Analysis EPGPT Errors for Angular Flux (t = 30) 
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study, we will introduce the BPRs insertion into the lattice model as shown in Figure 6-36. 

This is achieved by increasing the poison material densities significantly. Initial chemical 

composition and density of BPRs are provided in Table 6-7. The ranges of variations in the 

densities of BPRs are shown in Table 6-8. For each perturbed case, all materials atom 

densities in BPRs are perturbed as follows: 
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0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

Number of Test Cases

F
lu

x 
V

a
ria

tio
n

 E
st

im
a

tio
n

 (
rm

s)

 

 
Exact Variation

1st-Order E
P
GPT Approximation

E
P
GPT Approximation



www.manaraa.com

125 
 
 

 

 

where vector pn  describes the perturbed atom densities, 0n  and maxnΔ  denote the initial atom 

densities and maximum variations in the initial atom densities, respectively; ζ  is a random 

value from the uniform distribution on the interval (0,1). Furthermore, the temperature 

variations in the fuel rod and moderator is achieved by randomly perturbing the microscopic 

cross sections – fission, radiation capture, v  – by 10%± . The dimension of the perturbed 

parameters space is 1107α ∈ . 

As before, the sequence TSUNAMI-2D (reference) – NEWT forward (identify active 

subspace) – Modified NEWT GPT (adjoint solutions) – Modified SAMS (EPGPT) – Post-

processing is employed here to calculate the flux/response variations. In Figure 6-46, the 

singular value spectrum of 100 flux variations is presented.  

 

 
Figure 6-46. Singular Value Spectrum 
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Table 6-8. Atom Density Variations in BPRs 

Description Material Variations in Atom Density (atoms/cm·barn) 
 
 
     
     BPRs 

o-16 0.0 ~ 4.1979E-02 
b-10 0.0 ~ 1.7941E-04 
b-11 0.0 ~ 3.6046E-03 
na-23 0.0 ~ 1.5369E-03 
al-27 0.0 ~ 8.1645E-04 
si 0.0 ~ 1.6791E-02 
k 0.0 ~ 1.0577E-04 

 
 
 

The EPGPT is executed and is tested for a perturbed case, i.e. atom densities 

perturbations in BPRs and microscopic cross sections perturbations. The exact perturbed 

neutron angular flux values are calculated using direct forward calculation which requires a 

full NEWT forward execution. To study the performance of EPGPT for different sizes of the 

active subspace, the rms metric defined in Eq. (6.2.1) is employed. Figure 6-47 shows rms 

errors of neutron angular flux against the different sizes of the active subspace. As can be 

observed from Figure 6-47, first-order perturbation theory breaks down for this case study, 

since non-linear effects generated by BPRs insertion will have a significant impact on the 

flux variations. One can either perform the perturbation analysis by using two direct forward 

calculations or by using higher-order perturbation theory. The former approach is certainly 

preferable if only a small number of perturbations are examined. On the other hand, if a very 

large number of nonlinear perturbations are of interest, then a higher-order perturbation 

theory may be considered. Another important observation from Figure 6-47 is that higher-
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order EPGPT will consistently provide more and more accurate estimations for neutron flux 

as the size of the active subspace continues to increase.  

 

 
Figure 6-47. Analysis of EPGPT Errors versus r  

 

Figure 6-48 shows eigenvalue error, defined in Eq. (6.5.1), against different sizes of the 

active subspace. For reference, the eigenvalue error calculated by first-order GPT is shown 

on the same graph as a horizontal line. The exact variation in the eigenvalue is equal to 

262.58pcm, and the value obtained with only first-order terms is -1256.18pcm. In this case, 

first-order perturbation theory does not even predict the correct sign of the variation. The 

estimated eigenvalue variation by higher-order EPGPT is equal to 255.39pcm, and the 

absolute error is 7.19pcm if one employs only 55 basis vectors for this case. One may 

observe that the exact eigenvalue variation is much smaller compared to the preceding case 
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study, although one has inserted the BPRs. This is because the first-order term φΔP  nearly 

cancels the contribution of the term φΔP . This effect has been denoted as the first-order 

cancellation in (Williams 1986). 

 

 
Figure 6-48. Eigenvalue Tolerance versus r  
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Figure 6-49. Estimation of Response Variations (r = 55) 

 

 
Figure 6-50. Estimation of Response Variations (Relative and r = 55) 
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Figure 6-51. Comparison of Response Estimation Accuracy (r = 55) 
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Figure 6-52. Comparison of Estimation Accuracy for Eigenvalue Variation (t = 30) 

 

 
Figure 6-53. Analysis EPGPT Errors for Angular Flux (t = 30) 

0 5 10 15 20 25 30
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Number of Test Cases

E
ig

e
n

va
lu

e
 V

a
ria

tio
n

 E
rr

o
r 

( 
a

b
s.

re
l )

 

 

Exact Variation

1st-Order GPT Approximation
E

P
GPT Approximation ( r = 55)

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

Number of Test Cases

F
lu

x 
V

a
ria

tio
n

 E
st

im
a

tio
n

 (
rm

s)

 

 
Exact Variation

1st-Order E
P
GPT Approximation

E
P
GPT Approximation ( r = 55)



www.manaraa.com

132 
 
 

 

 

CASE III: This case study is based on a lattice model with a large reflector region. This 

model is modified from input file of NEWT sample 5 (Jessee, Dehart 2011). Table 6-9 

provides the design characteristics and Figure 6-54 depicts the model analyzed. In this 

model, seven UO2 pin-cells are adjacent to eight MOX pin-cells, which, in turn, are adjacent 

to a large reflector region. The outer boundary of the reflector is vacuum. Reflection on the 

top and bottom boundaries makes the problem infinite in the y-direction. The same sequence, 

i.e. TSUNAMI-2D (reference) – NEWT forward (identify active subspace) – Modified 

NEWT GPT (adjoint solutions) – Modified SAMS (EPGPT) – Post-processing, is employed 

here to calculate the flux/response variations. In this model, the v5-44 (or 44GROUPNDF5) 

cross section library, S-6 quadrature, P-1 scattering (P-2 in the moderator), spatial and 

eigenvalue stopping criteria of 1.0E-9 are used for NEWT forward calculation. The 

eigenvalue at the reference condition for this case is given by 1.167126effk = . For the adjoint 

and generalized adjoint calculations, the spatial and eigenvalue stopping criteria of 1.0E-7 are 

employed. There’re total 652 computational cells for this lattice model. Thus, the dimension 

of neutron angular flux space is 652 44 24 688212× × = , i.e., 688512φ ∈ . Additionally, 13 

different isotopes are adopted for this model. The microscopic multigroup cross sections – 

fission, radiation capture, v – of all isotopes are randomly perturbed by 30%± . The 

dimension of the perturbed parameters space is 1364α ∈ . In Figure 6-55, the singular value 

spectrum of 150 flux variations is presented, and one can observe that the spectrum of the 

singular values is decaying rapidly.  
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Table 6-9. Lattice Design for Case II 

Parameters Data 
Fuel Lattice  
Lattice 15 1×  
Number of fuel rod 15 

  
Fuel rod  

Type fuel pellet MOX 
Initial fuel composition (atom/(cm.barn))  

U-235 4.1308E-04 
U-234 3.3155E-06 
U-236 2.6710E-06 
U-238 1.9961E-02 
Pu-238 3.6128E-05 
Pu-241 1.7037E-05 
Pu-242 2.4477E-06 
Pu-240 9.6144E-05 
Pu-239 4.4708E-04 

Rod pitch (cm) 1.26 
Rod outer diameter (cm) 0.978 
Rod inner diameter (cm) 0.902 
Clad material SS304 
Clad temperature (K) 620 
Type fuel pellet UO2 
Initial fuel composition (atom/(cm.barn))  

U-235 9.2756E-04 
U-234 7.1799E-06 
U-236 5.2818E-06 
U-238 2.1843E-02 

Rod pitch (cm) 1.26 
Rod outer diameter (cm) 0.978 
Rod inner diameter (cm) 0.8926 
Clad material SS304 
Clad temperature (K) 620 
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Figure 6-54. Model Layout with Grid Structure 

 

 
Figure 6-55. Singular Value Spectrum 

 

The EPGPT is executed and is tested for a perturbed case with respect to microscopic 

multigroup cross sections perturbations. The exact values of perturbed neutron angular flux 
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Figure 6-56 shows rms errors of neutron angular flux against different sizes of the active 

subspace. 

 

 
Figure 6-56. Analysis of EPGPT Errors versus r 
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The perturbed eigenvalue is 1.181381 for this case. For reference, the eigenvalue error 

calculated by first-order GPT is shown on the same graph as a horizontal line. 

 

 
Figure 6-57. Eigenvalue Tolerance versus r 

 

As like before, the responses variations are analyzed in Figure 6-58, Figure 6-59, and 

Figure 6-60 from different point of view. For comparison, the exact variations in these 
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Figure 6-58. Estimation of Response Variations (r = 120) 

 

 
Figure 6-59. Estimation of Response Variations (Relative and r = 120) 
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Figure 6-60. Comparison of Response Estimation Accuracy (r = 44) 

 

 
Figure 6-61. Comparison of Estimation Accuracy for Eigenvalue Variation (t = 30) 
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Figure 6-62. Analysis EPGPT Errors for Angular Flux (t = 30) 
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in Figure 6-63 for one-quarter H. B. Robinson Lattice BO-5 with different grid structure 

compared to Figure 6-36. A reflective boundary condition was applied to the outer boundary 

0 5 10 15 20 25 30
10

-4

10
-3

10
-2

10
-1

10
0

Number of Test Cases

F
lu

x 
V

a
ria

tio
n

 E
st

im
a

tio
n

 (
rm

s)

 

 Exact Variation

1st-Order E
P
GPT Approximation

E
P
GPT Approximation



www.manaraa.com

140 
 
 

 

 

of this configuration. Individual depleting mixtures were specified for the burnable poison 

rod and its nearest neighbor fuel rod N-9, as illustrated in Figure 6-63; all other fuel rods in 

the lattice were treated as a single depletion material with uniform composition. The lattice 

model with initial fuel is depleted in 20 steps by SCALE 6.1 TRITON module. Each 

depletion step is chosen to 20 days with the power of fuel rod N-9 is normalized to 20.86 

MW/MTHM. For a single depletion step calculation, the sequence of BONAMI – CENTRM 

– NEWT – ORIGEN (Nuclide depletion calculation) is conducted. The fuel compositions are 

collected after each depletion step, and there’re 21 values for each fuel composition in the 

entire depletion range. These values will be fitted by a polynomial of degree five to the 

depletion step. The input for each perturbed case is achieved as follows: first sample the 

depletion step randomly, and then evaluate the fuel compositions using the pre-calculated 

polynomials of degree five at randomly selected depletion step. These evaluated fuel 

compositions will be employed as initial input of resonance calculations, i.e. BONAMI – 

CENTRM, to generate the self-shielded microscopic multigroup cross sections. Both fuel 

compositions and self-shielded microscopic multigroup cross sections will be considered as 

the input for the neutron transport calculations. Then, the NEWT forward is employed to 

generate the active subspace with respect to perturbed input microscopic multigroup cross 

sections and fuel compositions. The modified NEWT generalized adjoint (or GPT) is utilized 

to calculate the generalized adjoint solutions with respect to pseudo responses. The modified 

SAMS will perform first-order GPT calculation by employing fundamental forward and 

adjoint solution and EPGPT calculations utilizing the active subspace and generalized adjoint 
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solutions. Furthermore, the control module TSUNAMI-2D is utilized to perform the 

reference calculation with fuel compositions and self-shielded microscopic multigroup cross 

sections evaluated at 200 days, i.e., fundamental forward and adjoint calculations, using v5-

44 cross section library. 

 

 

Figure 6-63. Model Layout with Grid Structure 

 

The long-term depletion process will change the materials number densities significantly 

which will lead to large perturbations in the resonance self-shielded microscopic multigroup 

cross sections. Considering that both materials densities and cross sections will be changed 

during depletion, the input parameter space is particular large for this case study. However, 

the perturbations in input parameters are highly correlated as can be observed in Figure 6-64. 
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In Figure 6-64, the singular value spectrum of 100 flux variations is presented. One can 

observe that the spectrum of the singular values is decaying much faster than spectrum 

shown in Figure 6-46.  

 

 
Figure 6-64. Singular Value Spectrum 

 

The EPGPT is executed and is tested for a perturbed case, i.e. perturbed fuel 

compositions and the consequently generated perturbed microscopic multigroup cross 

sections. The exact values of perturbed neutron angular flux are calculated using NEWT 

forward. To study the performance of EPGPT for different sizes of the active subspace, the 

rms metric defined in Eq. (6.2.1) is employed. Figure 6-65 shows rms errors of neutron 

angular flux against the different sizes of the active subspace. As can be observed from 
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Figure 6-65, there is a significant discrepancy between the first-order EPGPT and higher-

order EPGPT. Figure 6-65 indicates that first-order approaches, i.e., first-order GPT and first-

order EPGPT, will not provide reliable results for this case study, since non-linear effects 

generated by depletion will have a significant impact on the flux variations. However, 

higher-order EPGPT will consistently provide very accurate approximation for neutron flux 

and eigenvalue as can be seen from Figure 6-65 and Figure 6-66. 

 

 
Figure 6-65. Analysis of EPGPT Errors versus r 
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order EPGPT with r = 60 is 4330.99pcm (4.23%). In this case, only 0.07% of reference 

eigenvalue cannot be captured by higher-order EPGPT. For reference, the eigenvalue error 

calculated by first-order GPT is shown on the same graph as a horizontal line.  

 

 
Figure 6-66. Eigenvalue Tolerance versus r 
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the model. These non-linear effects can be observed in neutron thermal range in Figure 6-69, 

which will make first-order approximation inaccurate. However, higher-order EPGPT 

consistently provides accurate estimations for user-defined responses as can be observed in 

Figure 6-68, Figure 6-69 and Figure 6-70. 

 

 
Figure 6-67. Reference Response Values 

-5 0 5 10 15 20 25
10

-4

10
-3

10
-2

10
-1

10
0

Neutron Lethargy (u) (E
0
 = 10 Mev)

R
e

fe
re

n
ce

 R
e

sp
o

n
se

 V
a

lu
e

 

 



www.manaraa.com

146 
 
 

 

 

 
Figure 6-68. Estimation of Response Variations (r = 60) 

 

 
Figure 6-69. Estimation of Response Variations (r = 60) 
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Figure 6-70. Comparison of Response Estimation Accuracy (r = 60) 
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eigenvalue (or effk ) variation much more accurately than the first-order GPT approximation. 

Figure 6-72 shows the rms error defined in Eq. (6.2.1) for all 30 test samples. The active 

subspace for this case is much smaller than the one employed in case II study of section 6.5. 
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Figure 6-71. Comparison of Estimation Accuracy for Eigenvalue Variation (t = 25) 

 

 
Figure 6-72. Analysis EPGPT Errors for Angular Flux (t = 25) 
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CHAPTER 7. EPGPT FOR UNCERTAINTY QUANTIFICATION 

 

7.1 Overview 

Reactor design and safety calculations are computationally expensive due to the 

complexity of the associated physics models which are typically nonlinear and tightly or 

loosely coupled with many input parameters and output responses. The repeated execution of 

the various models is essential to completing uncertainty quantification where one is 

interested in propagating the uncertainties in the simulation to understand the impact on the 

macroscopic behavior of the system. We restrict our discussion here to uncertainties in the 

parameters which are the independent variables input to the models. For radiation transport, 

the most prominent input parameters are the nuclear cross sections which are experimentally 

evaluated and processed through several pre-processing codes before they are used in core 

design and safety calculations.  

Mathematically, the prior parametric uncertainties are described by probability density 

functions (PDFs) which can be used to calculate the probability of finding the respective 

parameters in a given interval. The objective of uncertainty quantification (UQ) is to 

propagate the parameters PDFs throughout the physics model to determine the responses 

PDFs. Designers employ responses PDFs to identify the design and safety space. For 

example, in safety analysis, one needs to calculate the probability that a given response, say 

fuel temperature, exceeds a given value, e,g., melting point. The PDF for the maximum fuel 

temperature can be used to calculate this probability, often referred to as tail probability. 
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Determining tail probabilities represents one of the most difficult tasks in UQ. This is 

because the responses PDFs are often very different in shape from the parameters PDFs.  

Given the need to estimate the responses PDFs, one must have the capability to execute 

the model as many times as needed to ensure the impact of all possible parameters 

perturbations is quantified and understood. Understanding the impact implies the ability to 

determine the key parameters that contribute the most to the propagating uncertainties. In the 

simplest case, where the model is linear with k parameters whose uncertainties are described 

by Gaussian distributions, one needs to execute the model k additional times to understand 

the impact of all parameters. As the model becomes nonlinear, one must take into account the 

interaction between the parameters which increases the number of possible parameters 

perturbations that must be considered. The situation becomes even more complex as the 

parameters increase in number. This follows as the number of possible parameters 

perturbations becomes exponentially dependent on the number of parameters, which is 

commonly referred to as the curse of dimensionality.  

Therefore to enable UQ for a realistic nuclear engineering model, expected to have many 

parameters, one must devise a fast yet accurate capability to approximate the action of the 

forward model. Generalized perturbation theory (GPT) proved to provide such capability. 

GPT achieves that by solving the adjoint model, the mathematical dual of the forward model. 

The adjoint solution can be combined with the unperturbed forward solution to calculate first 

order of responses variations with respect to parameters perturbations (also known as first-

order derivatives) without having to re-execute the forward model. The computational cost to 
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calculate the variations is trivial as it only involves the inner products between the adjoint 

and forward solutions. The result is all the derivatives of a given response with respect to all 

parameters. When more responses are required, one must execute the adjoint model again for 

every given response.  

Over the past four decades, the GPT theory has been rigorously extended to describe the 

higher-order derivatives of responses. Unfortunately, as higher-order derivatives are sought, 

the computational cost becomes dependent either on the number of input parameters or the 

dimension of the space used to describe the forward solution, i.e., the flux solution, 

depending on the higher-order GPT approach employed. These challenges have limited the 

use of GPT to linear models and investigative studies only.  

 

7.2 EPGPT for Uncertainty Quantification 

The EPGPT is based on a hybrid methodology that combines both the forward and 

adjoint solutions to reduce the number of model executions and allows one calculate the 

higher orders of variations within user-defined accuracy. The computational cost is also 

inexpensive as it only involves simple inner products operations. This provides an enabling 

tool to analyze the impact of parameters perturbations on the responses variations as many 

times as needed.  

In this dissertation, we assume the uncertainties in parameters α  can be characterized 

by assigning a uniform distribution and/or Gaussian distribution with the same expectation 
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and variance. This is to illustrate the importance of the prior parameters PDF on the 

responses uncertainties.  

An EPGPT-based UQ algorithm involves the following four steps: 

1. Define the probability distributions describing the prior knowledge about the 

uncertain input parameters; 

2. Use the distributions in step 1 to generate multiple samples of input parameters; 

3. Use EPGPT to calculate the responses variations for each of the samples generated in 

step 2; 

4. Perform statistical analysis, e.g., moments evaluations, tail probability, etc., for the 

responses of interest.  

 
7.3 Preliminary Numerical Results 

The main objective here is to show that the EPGPT can be extended to do uncertainty 

quantification when the responses variations are nonlinear and the input parameters are non-

Gaussian. Moreover, the surrogate model constructed by EPGPT is able to predict the 

responses variations to the tolerance prescribed by the user. A simple model used in a 

previous case study is employed here for the demonstration.  

Table 7-1 provides the cross sections for the model depicted in Figure 7-1. 
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Figure 7-1. Model Layout 

 

Table 7-1. Cross Section Data * 

Materials Input Parameters 
1
tΣ  

1 1
,0s
→Σ  1 2

,0s
→Σ  1χ  2

tΣ  
2 2
,0s
→Σ  2

fΣ  2
fν  

MOX 0.2 0.185 0.015 1 1.2 0.9 0.3 1.5 
UO2 0.2 0.185 0.015 1 1.0 0.9 0.1 1.5 

Water 0.2 0.17 0.03 0 1.1 1.1 0 0 

*
1 21 1 2 1 2
0 0,0, , , , ,f f sν μ χ μ→Σ Σ  are all zeros, and diffusion coefficient is defined as 

1

3 r

g
g

t

D =
Σ

, where 

0

gg g g
tr t sμ= −Σ Σ Σ  and g is the energy group index . 

 
 

In this model, the flux has 256 dimensions representing 128 spatial nodes with equal 

spatial intervals and 2 energy groups per node. The first 128 values of φ  denote the fast 

group flux, the last 128 values of φ  denote the thermal group flux. The responses are the flux 

values evaluated everywhere in the space-energy phase space, i.e., [ ]i i
R φ= , for i = 1, …, 

256. 
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First, the EPGPT-based algorithm is executed for the perturbed models such that cross 

sections perturbations, i.e., scattering, fission, and v , were randomly selected from uniform 

distributions with 10% standard deviation relative to their reference values. The exact 

perturbed responses are calculated using direct forward perturbation (in brief, direct method) 

which requires the full forward model execution. To study the performance of EPGPT-based 

uncertainty quantification method for different sizes of the active subspace, Figure 7-2 and 

Figure 7-3 show the Mean (rms) and StDev (rms) error for responses variations against the 

size of active subspace, where the rms is defined as follows: 

 
( ) ( )

( )

2

,exact ,approx

1 ,exact

1
Mean: 

m
i i

i i

R R
rms

m R

μ μ
μ=

 Δ − Δ
 =
 Δ 

  (7.3.1) 

  

 
( ) ( )

( )

2

,exact ,approx

1 ,exact

1
StDev: 

n
i i

i i

R R
rms

n R

σ σ
σ=

 Δ − Δ
 =
 Δ 

  (7.3.2) 

where m is the total number of responses, and μ σ represent the mean value and standard 

derivation of the responses variations, respectively. We should emphasis here that the 

quantities defined in Eqs. (7.3.1) and (7.3.2), as one can recognize, are the ‘residuals’ 

between the proposed method and the direct method. To wit, all the results shown in (rms) 

can be viewed as the accuracy of the proposed method compared to the direct method. 
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Figure 7-2. Analysis of EPGPT Errors versus r (with 100 Uniform Samples) 

 

 
Figure 7-3. Analysis of EPGPT Errors versus r (with 100 Uniform Samples) 
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Second, let us pick a user-defined error tolerance, say 4Mean:  = 10rms − , we can 

determine the size of the active subspace r is around 50. Choose r = 50, and then we assume 

the uncertainties in the input parameters are characterized by uniform distribution with 

relative uncertainties within 10%. Table 7-2 shows the accuracy of EPGPT-based method. 

The relative eigenvalue variations distribution and the relative discrepancy of the eigenvalue 

variations distribution are shown in Figure 7-4. The results in Figure 7-4 demonstrate that the 

EPGPT-based method could predict the eigenvalue variations within user-defined tolerance, 

although there are large variations in the eigenvalue (maximum 20%). The relative output 

distributions at certain points in the space are shown in Figure 7-5 and Figure 7-6, where 0R  

denotes the unperturbed response value, exactRΔ  and EpGPTRΔ  are the exact response variation 

calculated by the direct method and the evaluated response variation obtained by EPGPT 

algorithm, respectively. Although the distribution for the input is uniform, the distribution for 

the output is non-uniform and non-Gaussian.  

 

Table 7-2. Accuracy of EPGPT-Based Method vs. the Number of Samples 

Num. of Samples 100 1000 5000 10000 
Mean (rms) 1.451e-05 7.656e-06 1.281e-05 6.326e-06 
StDev (rms) 5.816e-07 4.016e-07 3.991e-07 3.908e-07 
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Figure 7-4. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (λ-Eigenvalue with 10000 Uniform Samples) 
 
 
 

 
Figure 7-5. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (Response at Point 3.047cm in Group 1 with 10000 
Uniform Samples) 
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Figure 7-6. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (Response at Point 3.047cm in Group 2 with 10000 
Uniform Samples) 

 
 

Third, to demonstrate the nonlinearity of the model, Gaussian distributions for the input 

parameters are employed with the same expectations and standard derivations as the uniform 

distribution employed in the first test case. Table 7-3, Figure 7-7, Figure 7-8 and Figure 7-9 

show the similar results as before. If the model is linear, the relative response variations are 

expected to follow a Gaussian distribution which is not the case for the thermal flux shown in 

Figure 7-9. Simple inspection of Figure 7-6 and Figure 7-9  show that the two distributions 

are quite different especially at the tails, which are particularly important for safety related 

calculations.  
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Table 7-3. Accuracy of EPGPT-Based Method vs. the Number of Samples 

Num. of Samples 100 1000 5000 10000 
Mean (rms) 6.169e-05 3.093e-05 5.084e-06 5.452e-06 
StDev (rms) 5.527e-07 5.914e-07 5.563e-07 6.081e-07 

 
 
 

 
Figure 7-7. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (λ-Eigenvalue with 10000 Gaussian Samples) 
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Figure 7-8. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (Response at Point 3.047cm in Group 1 with 10000 
Gaussian Samples) 

 
 
 

 
Figure 7-9. Relative Variations Distribution (Left) and Relative Discrepancy of 

Variations Distribution (Right) (Response at Point 3.047cm in Group 2 with 10000 
Gaussian Samples) 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK  

 

8.1 Conclusions  

Generalized perturbation theory is well developed for nuclear reactor design and analysis 

during the last fifty years. Moreover, it has been successfully applied to reactor critical 

eigenvalue calculations, depletion calculations, shielding design, kinetics problems, and 

sensitivity analysis and uncertainty quantification. The most common implementation of 

GPT estimates the first order of variations for a given response with respect to input 

parameters perturbations. The first-order GPT has found its way into standardized computer 

package SCALE 6.1 (RSICC 2011) developed by Oak Ridge National Laboratory (ORNL). 

In performing reactor analysis and design calculations, first-order GPT can significantly 

reduce the computational cost through bypassing the repeated executions of forward 

calculations, which is facilitated via adjoint calculations. Although very efficient, the 

accuracy is degraded when the parameters are outside the range that renders linear 

approximation acceptable, e.g., control rod/burnable poison rod insertions, fuel rod burnup, 

and fuel lattice shuffling. Higher-order GPT has been well developed in theory. 

Unfortunately, as higher-order derivatives are sought, the computational cost, e.g. the total 

number of model simulations involving forward and/or adjoint simulations, becomes 

dependent either on the number of input parameters or the dimension of the space used to 

describe the forward solution depending on the higher-order GPT approach employed. In this 
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dissertation, this difficulty in computational cost is properly addressed by EPGPT via the 

reduced basis technique. 

The objective of the reduced basis technique is to achieve significant computational 

reduction and improvement in computational performances whenever one is interested in 

real-time simulation and/or repeated output evaluations for sensitivity analysis and 

uncertainty quantification. The fundamental idea of the reduced basis technique employed in 

this dissertation is to represent the state variations using a linear combination of basis vectors 

spanning the reduced basis space for the high-dimensional input parameters space. The 

‘snapshots’ of forward model simulations corresponding to input parameters perturbations is 

used to identify the reduced basis space, i.e., the Lagrange reduced basis spaces. To date, the 

essential approach utilized to explore the best basis functions for the reduced basis space is 

proper orthogonal decomposition (POD) of snapshots. The basic premise behind POD of 

snapshots is that the variability of the state can be well approximated by a subspace which 

may be spanned by the reduced basis. This characteristic can be observed in all the case 

studies in this dissertation. Furthermore, this kind of basis vectors can be pre-computed and 

stored for real-time simulations and sensitivity analysis and uncertainty quantification 

calculations. In this case, the computational cost for higher-order EPGPT becomes only 

dependent on the size of the active subspace rather than the original state space or input 

parameter space. This idea has led to tremendous saving in computational overhead 

especially for complex large-scale problems where a detailed description of the state must be 

calculated. 
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Another limitation of first-order GPT is the difficulty in tackling multi-responses or 

distributed responses, e.g., few-group cross sections generated by the lattice calculations for 

full-core simulations, and space-dependent power density in lattice or reactor core 

calculations. This is because a separate adjoint model simulation is required for each 

response of interest which can lead to significant computational cost. Traditionally, one can 

adopt multi-modal approach or use coarse region averaged responses. However, both 

methods are limited to linear approximation of responses of interest, and furthermore the 

applicability of multi-modal approach is limited to problem with smooth distributed 

responses only. This issue could be well addressed by EPGPT based on the premise that the 

state variations lie in a small size of active subspace. Moreover, if the response functions are 

smooth or one is only interest in small perturbations of input parameters, one can employ 

only first-order EPGPT to efficiently and accurately calculate the variations in the responses 

of interest. Of course, higher-order EPGPT has also been demonstrated by numerical studies 

to capture both linear and non-linear behaviors of responses of interest. 

Thus far, the challenges in the current GPT approach have been properly overcome in 

this dissertation such that EPGPT proves to be practical for the realistic reactor calculations. 

In this dissertation, an efficient computational algorithm has been also proposed to address 

the explosion in dimensionality whether at the input parameter level or at the response level. 

Another distinct characteristic of EPGPT is the capability to establish a rigorous a 

posteriori upper error bound to describe the accuracy of the responses variations as they 

compare to exact responses variations calculated using direct forward model perturbations. 
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Moreover, different error bounds for different responses could also be defined by the user 

depending on the design specifications. This is achieved by employing range-finding 

algorithm with only a small number of oversampling to identify the active subspace for 

EPGPT. 

And furthermore, the EPGPT consists of two phases: (1) the pre-computation phase 

involving all necessary forward and adjoint model executions to identify the active subspace 

and establish a rigorous a posteriori upper error bound; (2) the evaluation phase calculates 

the exact variation in the response using only inner products operations which are 

computationally inexpensive compared to the execution cost of forward and adjoint models. 

In conclusion, the essential ingredients of EPGPT method are: (i) GPT formalism 

employed for the response variation calculations with high efficiency; (ii) reduced basis 

technique, in particular, POD of snapshots enabling to generate the best basis functions; and 

(iii) a rigorous a posteriori error estimator used for both the basis selection and the 

certification of the solution. Moreover, the combination of these three factors yields 

substantial computational savings which are at the basis of an efficient model order reduction, 

ideally suited for SA/UQ, system optimization and real-time simulation. Moreover, the 

posteriori error estimator is essential to guarantee efficiency, reliability, and accuracy. They 

allow us to explore efficiently the parameter spaces in search of most representative basis 

functions, and to identify active subspace. To some extent, EPGPT has extended the 

applicability of generalized perturbation theory to calculate with quantifiable accuracy the 

exact variations in models with many responses and many parameters. 
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8.2 Future Work Recommendations 

Although we are focusing only on the derivation of the EPGPT for neutron diffusion 

and/or transport theory and demonstrating the applicability for the reactor physics 

calculations, the proposed methods and algorithms can be readily extended to other nuclear 

reactor problems or even further to other engineering problems. First of all, one can employ 

EPGPT to efficiently and accurately (accounting for higher orders of variations) replace the 

lattice calculations, currently executed using transport models. In practice, the lattice 

calculations must be executed for a range of different conditions to account for neutronics 

and thermal-hydraulics conditions. One could treat all types of changes in all assemblies as 

the input parameters perturbations, apply the range-finding algorithm to identify the active 

subspace, and then employ the EPGPT to accurately evaluate the few group constants. By 

employing EPGPT, the cost of these lattice calculations could be minimized. Second, the 

first-order EPGPT can be readily applied into sensitivity analysis and uncertainty 

quantification, since one could obtain the explicit form for neutron flux variations. To wit,  

 Source-driven problem: ( )( ) ( )*
ex1 1

1 1

,
r r

i
i i i is

i
t st

qq qβφ α φ
= =

Δ = =Δ Γ− Δ − Δ  P  

 Eigenvalue problem: ( )( )1
1

1
1

*,
r r

i i
i i i ist st

q qφ α φβ
= =

Δ = = −Δ ΔΓ  P  

Thus, one can calculate the first-order derivatives of the neutron flux with respect to input 

parameter α : 

 Source-driven problem: * e

1

x,i i

r

i

q
q

φ
α α

φ
α =

 = − − 
 

∂∂ ∂Γ
∂ ∂ ∂ P
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 Eigenvalue problem: 
1

*,i

r

i
i

q
φ
α

φ
α=

∂ ∂Γ
∂ ∂

= − P
 

Considering the response defined in Eq. (2.5.1), one can calculate the sensitivity coefficients 

by 

 , ,d
dR

R

R R

α α α φφ
α α α

Σ= ∂ Σ∂ ∂
∂ ∂ ∂

+  

The first term in the RHS denoted as the direct term which can be readily calculated, while 

the second term in the RHS could be rewritten as: 

 Source-driven problem:  
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or 

 Eigenvalue problem:  
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∂
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Considering that SCALE has the ability to calculate the inner product *,
α

φ∂Γ
∂

P
 in SAMS 

module, this idea can be readily implemented into SCALE. Near term goals include 

implementing first-order EPGPT and higher-order EPGPT into SCALE, examining larger 

spatial region at full core level, demonstrating the convergence for eigenvalue iterative 

method, and understanding the errors for depletion problems. Long-term goal is to extend 

EPGPT for fuel loading pattern optimization. 
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Appendix A 

 
MATLAB Code for Analytic Example 
 
 

clear; clc; 
% Define Operators; 
A=[5.0 0.0; -1.0 2.0]; 
B=[3.0 1.5; 1.0 0.5]; 
% Solve Forward Equation; 
[refflux k_ref]=eigs(B,A,1); 
refflux=abs(refflux)/norm(refflux,1); 
% Solve Adjoint Equation;  
[aflux ka]=eigs(B',A',1); 
% Define Perturbed Operator;  
alpha=1; 
dA=[alpha 0.0; 0.0 0.0]; 
% Perturb Input Parameters and Calculate the Flux Variations;  
np=2;ng=2;nr=2; 
mflux=zeros(ng,np); 
for i=1:np 
    alpha=rand(1)*2-1; 
    dA=[alpha 0.0; 0.0 0.0]; 
    Ap=A+dA; 
    [pflux kp]=eigs(B,Ap,1); 
    pflux=abs(pflux)/norm(pflux,1); 
    mflux(:,i)=pflux-refflux; 
end 
% Generate the Basis;  
[Q S V]=svd(mflux,0); 
gmflux=zeros(ng,nr); 
% Solve the Generalized Adjoint Equation and Record the Solution: 
gmflux;  
Pa=A'-1/k_ref*B'; 
for i=1:1 
    gmflux(:,i)=(Pa)\(Q(:,i)-Q(:,i)'*refflux(:)*ones(ng,1)); 
    beta=(gmflux(:,i)'*B*refflux)/(aflux'*B*refflux); 
    gmflux(:,i)=gmflux(:,i)-beta*aflux; 
end  
% 100 Random Test Cases 
Sigma_c1=3; 
for i=1:100 
    alpha=(rand(1)*2-1)*0.2*Sigma_c1; 
    dA=[alpha 0.0; 0.0 0.0]; 
    Ap=A+dA; 
    [pflux kp]=eigs(B,Ap,1); 
    pflux=abs(pflux)/norm(pflux,1); 

lambda0=0;lambda1=0.00001;eta=1e-16; 
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     while (abs(lambda1-lambda0)>eta) 

       dPa=dA-lambda1*B; 
        Uk=dPa*Q; 
        dPflx=-Uk*((eye(nr)+gmflux'*Uk)\(gmflux'*dPa*refflux)); 
        lambda0 = lambda1; 
        lambda1=(aflux'*dA*refflux+aflux'*dPflx)/(aflux'*B*refflux); 
    end 
    dPa=dA-lambda1*B; 
    Uk=dPa*Q; 

dpflux_epgpt=-Q*gmflux'*dPa*refflux 
      +Q*gmflux'*Uk*((eye(nr)+gmflux'*Uk)\(gmflux'*dPa*refflux)); 

    dpflux_e=pflux-refflux; 
    err_ka(i)=(kp-1/(1/k_ref+lambda1))*1e5; 
    lbd_st=(aflux'*dA*refflux)/(aflux'*B*refflux); 
    err_k0(i)=(kp-k_ref)*1e5-(-lbd_st*k_ref^2*1e5); 
end 
%  
x=(1:100); 
%plots 
set(0,'DefaultAxesFontName', 'Arial'); 
set(0,'DefaultAxesFontSize', 12); 
% Change default text fonts. 
set(0,'DefaultTextFontname', 'Arial'); 
set(0,'DefaultTextFontSize', 12); 
figure(1) 
plot(x,err_k0,'ro',x,err_ka,'b.', 'LineWidth',2); 
xlabel('Test Case'); ylabel('K_{eff}  Variational Error (pcm)'); 
h_legend=legend('1^{st}-Order GPT Approximation','E_PGPT 
Approximation',3); 
axis([0 100 0 2000]); 
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Appendix B 

 

Higher-Order Generalized Perturbation (Rahnema’s Method) 

This Appendix explains how the method proposed by Rahnema for boundary conditions 

perturbations for eigenvalue problem is applied to cross sections perturbations for source-

driven problem. Consider a source-driven diffusion model described by: 

 ( ) ( )sqα φ α=P  

Perturbing the input parameters by some amounts where the flux variations are expanded 

in terms of powers of a small dimensionless parameter β : 

( )( )2
1 2

i
i s sq qβ φ β φ β φ β φ β+ Δ + Δ + Δ + + Δ + = + ΔP P    

Combining terms with common powers of β  results in a series of higher-order 

perturbed equations given by: 

 sqφ =P  

1 sqφ φΔ = Δ − ΔP P  

2 1φ φΔ = −Δ ΔP P  

1i iφ φ −Δ = −Δ ΔP P  

As defined by Rahnema, *
jψ  is the solution to  

**
j jGψ =P  
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where ( ) ( )j j jx x EG Eδ δ≡ − − , we operate on the higher-order perturbed system with 

*,.jψ , we arrive at the following equations: 

( ) ( ) ( )* * *
11 0 1 0, , ,, ,j j s j j j j sq x G qEφ φ φ φψ ψ φ ψΔ = Δ − Δ  = Δ = ΔΔ − ΔP P P  

( ) ( )2 1 2 2
* *

1
*, , , , ,j j j j j jx E Gφ φ φψ ψ φφ ψΔ = −Δ  = Δ = −Δ Δ Δ ΔP P P  

( ) ( )* * *
1 1, , , ,,j i j i i j j j i j ix E Gψ ψφ φ φ ψφ φ− −Δ = −Δ  = Δ = − ΔΔ Δ ΔP P P  

Finally, we can obtain the higher-order terms for the perturbed flux 

( ) *
1, ,jn jj nx E ψφ φ −ΔΔ = − ΔP  

which can be summed to calculate the exact perturbed flux (which represents the response in 

our case study) as: 


1 2 iφ φ φ φ φ= Δ Δ ++ +Δ+ +  

 


